A WATER RESOURCES TECHNICAL PUBLICATION ENGINEERING MONOGRAPH NO. 27 # Moments and Reactions for Rectangular Plates UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION Engineering Monograph No. 27 # Moments and Reactions for Rectangular Plates By W. T. MOODY Division of Design Denver, Colorado United States Department of the Interior BUREAU OF RECLAMATION As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration. First Printing: October 1963 Revised: July 1963 Reprinted: April 1966 Reprinted: July 1970 Reprinted: June 1975 Reprinted: December 1976 Reprinted: January 1978 Reprinted: April 1980 Reprinted: March 1983 Reprinted: June 1986 Reprinted: August 1990 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1978 ## Preface This monograph presents a series of tables containing computed data for use in the design of components of structures which can be idealized as rectangular plates or slabs. Typical examples are wall and footing panels of counterfort retaining walls. The tables provide the designer with a rapid and economical means of analyzing the structures at representative points. The data presented, as indicated in the accompanying figure on the frontispiece, were computed for five sets of boundary conditions, nine ratios of lateral dimensions, and eleven loadings typical of those encountered in design. As supplementary guides to the use and development of the data compiled in this monograph, two appendixes are included. The first appendix presents an example of application of the data to a typical structure. The second appendix explains the basic mathematical considerations and develops the application of the finite difference method to the solution of plate problems. A series of drawings in the appendixes presents basic relations which will aid in application of the method to other problems. Other drawings illustrate application of the method to one of the specific cases and lateral dimension ratios included in the monograph. ## Acknowledgments The writer was assisted in the numerical computations by W. S. Young, J. R. Brizzolara, and D. Misterek. H. J. Kahm assisted in the computations and in checking the results obtained. The figures were prepared by H. E. Willmann. Solutions of the simultaneous equations were performed using an electronic calculator under the direction of F. E. Swain. ### LOADING CONDITIONS ### NOTES The various cases are analyzed for the indicated ratios of a/b. Cases 1, 2, and 3: 1/8, 1/4, 3/8, 1/2, 3/4, 1, and 3/2. Case 4: 1/8, 1/4, 3/8, 1/2, 3/4, and 1. Case 5: 3/8, 1/2, 5/8, 3/4, 7/8, and 1. All results are based on a Poisson's ratio of 0.2. #### INDEX OF BOUNDARY AND LOADING CONDITIONS ## **—FRONTISPIECE** # Contents | Preface and Acknowledgments | Page
iii | |---|-------------| | Frontispiece | iv | | Introduction | | | | 1 | | Method of Analysis | 3 | | Results | 5 | | Effect of Poisson's Ratio | 6 | | Accuracy of Method of Analysis | 43 | | Appendix I | 45 | | An Application to a Design Problem | 45 | | Appendix II | 49 | | The Finite Difference Method | 49 | | IntroductionGeneral Mathematical Relations | 49
49 | | Application to Plate Fixed Along Three Edges and Free Along the Fourth | 54 | | List of References | 89 | | LIST OF FIGURES | | | Number | Page | | 1. Plate fixed along three edges, moment and reaction coefficients, Load I, uniform load | 7 | | 2. Plate fixed along three edges, moment and reaction coefficients, Load II, 2/3 uniform load | . 8 | | 3. Plate fixed along three edges, moment and reaction coefficients, Load III, 1/3 uniform load | 9 | | 4. Plate fixed along three edges, moment and reaction coefficients, Load IV, uniformly varying load | 10 | | 1, minoring varying toau | 10 | | Num | | Pag | |-------------|---|-----| | | Plate fixed along three edges, moment and reaction coefficients, Load V, 2/3 uniformly varying load | 11 | | 6. | Plate fixed along three edges, moment and reaction coefficients, Load VI, 1/3 uniformly varying load | 12 | | 7. | Plate fixed along three edges, moment and reaction coefficients, Load VII, 1/6 uniformly varying load | 13 | | 8. | Plate fixed along three edges, moment and reaction coefficients, Load VIII, moment at free edge | 14 | | 9. | Plate fixed along three edges, moment and reaction coefficients, Load IX, line load at free edge | 15 | | | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load I, uniform load | 16 | | | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load II, 2/3 uniform load. | 17 | | | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load III, 1/3 uniform load | 18 | | 13. | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load IV, uniformly varying load. | 19 | | | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load V, 2/3 uniformly varying load | 20 | | | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load VI, 1/3 uniformly varying load | 21 | | | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load VII, 1/6 uniformly varying load——— | 22 | | | Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load VIII, moment at hinged edge | 23 | | | Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load I, uniform load | 24 | | | Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load II, 2/3 uniform load | 25 | | | Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load III, 1/3 uniform load | 26 | | | Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load IV, uniformly varying load. | 27 | | 22. | Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load V, 2/3 uniformly varying load | 28 | | 23. | Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load VI, 1/3 uniformly varying load. | 29 | | 24. | Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load VII, 1/6 uniformly varying | | | 25 . | load | 30 | | 26. | ment and reaction coefficients, Load VIII, moment at free edge
Plate fixed along one edge—Hinged along two opposite edges, | 31 | | | moment and reaction coefficients, Load IX, line load at free edge-
Plate fixed along two adjacent edges, moment and reaction coeffi- | 32 | | | cients, Load I, uniform load. | 33 | CONTENTS | $Nu\pi$ | | |-------------|--| | | Plate fixed along two adjacent edges, moment and reaction coefficients, Load II, 2/3 uniform load | | | Plate fixed along two adjacent edges, moment and reaction coefficients, Load III, 1/3 uniform load | | | Plate fixed along two adjacent edges, moment and reaction coef-
ficients, Load IV, uniformly varying load | | | Plate fixed along two adjacent edges, moment and reaction coefficients, Load V, 2/3 uniformly varying load | | | Plate fixed along two adjacent edges, moment and reaction coefficients, Load VI, 1/3 uniformly varying load | | | Plate fixed along two adjacent edges, moment and reaction coefficients, Load VII, 1/6 uniformly varying load | | | Plate fixed along four edges, moment and reaction coefficients, Load I, uniform load | | | Plate fixed along four edges, moment and reaction coefficients, Load X, uniformly varying load, p=0 along y=b/2 | | | Plate fixed along four edges, moment and reaction coefficients, Load XI, uniformly varying load, p=0 along x=a/2 | | | Counterfort wall, design example | | | Grid point designation system and notation | | | Load-deflection relations, Sheet I | | | Load-deflection relations, Sheet II | | | Load-deflection relations, Sheet III | | | Load-deflection relations, Sheet IV | | 4 3. | Load-deflection relations, vertical spacing: 3 at h; 1 at h/2, Sheet V_ | | 44. | Load-deflection relations, vertical spacing: 2 at h; 2 at h/2, Sheet VI | | | Load-deflection relations, vertical spacing: 2 at h; 1 at h/2; 1 at h/4, Sheet VII | | | Load-deflection relations, vertical spacing: 1 at h; 3 at h/2, Sheet VIII | | | Load-deflection relations, vertical spacing: 1 at h; 1 at h/2; 2 at h/4, Sheet IX | | | Load-deflection relations, vertical spacing: 1 each at h, h/2, h/4, and h/8, Sheet X | | | Load-deflection relations, vertical spacing: 4 at h/2, Sheet XI | | | Load-deflection relations, vertical spacing: 1 at h/2; 3 at h/4, Sheet XII | | | Load-deflection relations, vertical spacing: 1 at h/2; 1 at h/4; 2 at h/8, Sheet XIII | | 52 . | Load-deflection relations, vertical spacing: 4 at h/4, Sheet XIV | | 53. | Load-deflection relations, vertical spacing: 1 at h/4; 3 at h/8, Sheet XV | | 54 . | Load-deflection relations, vertical spacing: 4 at h/8, Sheet XVI |
| | Load-deflection relations, horizontal spacing: 4 at rh/2, Sheet XVII | | | Load-deflection relations, horizontal spacing: 3 at rh/2; 1 at rh, Sheet XVIII | | 57. | Load-deflection relations, horizontal spacing: 2 at rh/2; 2 at rh, Sheet XIX | | 5 8. | Load-deflection relations, horizontal spacing: 1 at rh/2; 3 at rh, Sheet XX | ## CONTENTS | Number | |--| | 59. Load-deflection relations, horizontal spacing: 4 at rh, Sheet XXI | | 60. Moment-deflection relations | | 61. Moment-deflection relations, various point spacings | | 62. Shear-deflection relations, Sheet I | | 63. Shear-deflection relations, Sheet II | | 64. Shear-deflection relations, Sheet III | | 65. Load-deflection coefficients, $r=1/4$, $\mu=0.2$ | | 66. Plate fixed along three edges—30 equations for determining unknown deflections. a/b=1/4 | | 67. Plate fixed along three edges, deflection coefficients. $a/b=1/4$. | | Various loadings | | 68. Plate fixed along three edges—20 equations for determining unknown | | deflections. a/b=1/4 | | 69. Numerical values of typical moment and reaction arrays, $r=1/4$, | | $\mu = 0.2$ | | 70. Plate fixed along three edges, deflections—reactions—bending moments, Load I. a/b=1/4, μ =0.2. | | | | LIST OF TABLES | | Number | | 1. Effect of Poisson's Ratio (µ) on Coefficients of Maximum Bending | | Moment at the Center of a Uniformly Loaded Rectangular Plate | | Fixed along Four Edges | | 2. Comparison of Coefficients of Maximum Bending Moment at the | | Center of a Uniformly Loaded Rectangular Plate Fixed along | | Four Edges | | 3. M _x for Heel Slab at Supports | | 4. My for Heel Slab at Supports | | 5. M _x for Wall Slab at Supports | | 6. My for Wall Slab at Supports | ## Introduction CERTAIN COMPONENTS of many structures may be logically idealized as laterally loaded, rectangular plates or slabs having various conditions of edge support. This monograph presents tables of coefficients which can be used to determine moments and reactions in such structures for various loading conditions and for several ratios of lateral dimensions. The finite difference method was used in the analysis of the structures and in the development of the tables. This method, described in Appendix II of this monograph, makes possible the analysis of rectangular plates for any of the usual types of edge conditions, and in addition it can readily take into account virtually all types of loading. An inherent disadvantage of the method lies in the great amount of work required in solution of the large number of simultaneous equations to which it gives rise. However, such equations can be readily systematized and solved by an electronic calculator, thus largely offsetting this disadvantage. | · | | | | |---|--|--|--| ## Method of Analysis THE FINITE difference method is based on the usual approximate theory for the bending of thin plates subjected to lateral loads. The customary assumptions are made, therefore, with regard to homogeneity, isotropy, conformance with Hooke's law, and relative magnitudes of deflections, thickness, and lateral dimensions. (See Appendix II.) Solution by finite differences provides a means of determining a set of deflections for discrete points of a plate subjected to given loading and edge conditions. The deflections are determined in such a manner that the deflection of any point, together with those of certain nearby points, satisfy finite difference relations which correspond to the differential expressions of the usual plate theory. These expressions relate coordinates and deflections to load and edge conditions. In this study, for each load and ratio of lateral dimensions, deflections were determined at 30 or more grid points by solution of an equal number of simultaneous equations. A relatively closer spacing of points was used in some instances near fixed boundaries to attain the desired accuracy in this region of high curvature. For the a/b ratios 1/4 and 1/8, one and two additional sets, respectively, of five deflections were determined in the vicinity of the x axis. Owing to the limitations on computer capacity, these deflections were computed by solutions of supplementary sets of 20 equations whose right-hand members were functions of certain of the initially computed deflections as well as of the loads. In each case, the solution of the equations was made through the use of an electronic calculator. Computations of moments and reactions were made using desk calculators and the appropriate finite difference relations. The finite difference relations used are discussed in Appendix II. ^{*}Numbers in superscript refer to publications in List of References on page 89. | · | | | |---|--|--| ## Results FIGURES 1 through 36 present the results of these studies as tables of dimensionless coefficients for the rectangular components of bending moment and for reactions at the supports. The studies were carried out for the following edge, or boundary, conditions: Case 1: Plate fixed along three edges and free along the fourth edge. Case 2: Plate fixed along three edges and hinged along the fourth edge. Case 3: Plate fixed along one edge, free along the opposite edge, and hinged along the other two edges. Case 4: Plate fixed along two adjacent edges and free along the other two edges. Case 5: Plate fixed along four edges. The loads, selected because they are representative of conditions frequently encountered in structures, are: Load I: Uniform load over the full height of the plate. Load II: Uniform load over 2/3 the height of the plate. Load III: Uniform load over 1/3 the height of the plate. Load IV: Uniformly varying load over the full height of the plate. Load V: Uniformly varying load over 2/3 the height of the plate. Load VI: Uniformly varying load over 1/3 the height of the plate. Load VII: Uniformly varying load over 1/6 the height of the plate. Load VIII: Uniform moment along the edge y=b of the plate for Cases 1, 2, and 3. Load IX: Uniform line load along the free edge of the plate for Cases 1 and 3. Load X: Uniformly varying load, p=0 along y=b/2. Load XI: Uniformly varying load, p=0 along x=a/2. Plates with the following ratios of lateral dimensions, a, to height b, were studied for the first four cases: 1/8, 1/4, 3/8, 1/2, 3/4, 1, 3/2. The analysis was carried out for these cases using Loads I through IX and all dimension ratios, except that Load IX was omitted from Case 2 for obvious reasons, and Loads VIII and IX and the ratio a/b=3/2 were omitted from Case 4. It will be noted that for the first three cases, which have symmetry about a vertical axis, the dimension a denotes one-half of the plate width, and for the fourth, unsymmetrical case, a denotes the full width. For Case 5, lateral dimension ratios of 3/8, 1/2, 5/8, 3/4, 7/8 and 1 were studied, subjected to Loads I, X, and XI. For this case, a and b denote the full lateral dimensions. All numerical results are based on a value of Poisson's ratio of 0.2. The arrangement of the tables is such that each coefficient, both for reaction and moment, appears in the tables at a point which corresponds geometrically to its location in the plate as shown in each accompanying sketch. #### Effect of Poisson's Ratio A question which frequently arises is: What effect does Poisson's ratio have on the bending moments in a plate? For the plate fixed along four sides, a clear understanding of this effect can be determined easily, since the deflections computed from finite difference theory are independent of Poisson's ratio. Futhermore, the bending moments at, and normal to, the fixed edges are unaffected by this factor. It is reasonable then to conclude that insofar as the moments which are most important in design are concerned, the maximum effect for this case will occur at the center of the slab. Table 1 shows a comparison of maximum bending moment coefficients at the center of a uniformly loaded plate for several values of μ and for each ratio of a/b for which Case 5 was computed. For a change in Poisson's ratio from 0.2 to 0.3 it is noted that the maximum effect on the bending moment coefficient occurs at a/b=1, where the change in the coefficient is less than 8 percent. Table 1.—Effect of Poisson's Ratio (μ) on Coefficients of Maximum Bending Moment at the Center of a Uniformly Loaded Rectangular Plate Fixed Along Four Edges | Values of M ₇ /pa ² | | | | | | | | | | | | | |---|---|--|--|-------------------|--|--|--|--|--|--|--|--| | a/b # | 0 | 0.1 | 0.2 | 0.3 | | | | | | | | | | 0. 375 | -0.0423 | -0.0424 | -0. 0424 | -0. 0425 | | | | | | | | | | 0. 5
0. 625 | -0.0403 -0.0358 | -0.0407 -0.0367 | -0.0411 -0.0376 | -0.0415 -0.0384 | | | | | | | | | | 0. 75
0. 875 | $ \begin{array}{c c} -0.0298 \\ -0.0235 \end{array} $ | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | -0.0337 -0.0283 | | | | | | | | | | 1. 0 | -0.0177 | -0. 0195 | -0.0213 | -0.0230 | | | | | | | | | | | T | | Γ | · · · · · · · · · · · · · · · · · · · | N | M _x | | | <u> </u> | | | A | - | | | |-------------|-------------|-------------------------------|------------------|---------------------------------------|---|--|--|--------------|----------------|--|--------------|----------------|--------------|--------------|--| | 1 | y/b | R _v ×/o | 0 | 0.2 | T | ,
| | Τ | M _y | | | | | | | | | 1.0 | +.1249 | <u> </u> | 0.2 | +.0002 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1_ | 0.8 | +.1248 | +.0051 | +.0024 | + | 0014 | 0024 | | | + 0005 | +.0000 | 0 | 0 | 0 | | | | 0.6 | +.1247 | + .0052 | + | + | 0014 | 0023 | 0027 | | + | +.0000 | 0003 | 0005 | 0005 | | | 1 11 | 0.4 | + 1250 | +.0051 | + .0023 | | 0014 | 0023 | 0027 | +.0010 | | + .0000 | 0003 | 0005 | + | | | م | 0.2 | +.1185 | + | + .0021 | | 0013 | 0021 | 0024 | +.0010 | +.0004 | + | 0004 | 0006 | + | | | 9 | 0 | +.0504 | 0 | +.0001 | +.0003 | +.0005 | +.0006 | +.0007 | 0 | | +.0016 | +.0025 | | + | | | | | R _X R _y | +.0504 | +.0116 | +.0568 | + .0893 | +.1084 | +.1141 | | <u> </u> | | | | 1 | | | | 1.0 | +,2483 | +.0209 | +.0096 | +.0007 | 0057 | 0096 | 0109 | 0 | 0 | 0 | 0 | 0 | 0 | | | <u>*</u> | 0.8 | + .2523 | +.0206 | + .0093 | +.0006 | 0056 | 0093 | 0105 | +.0041 | + .0019 | + .0002 | 0009 | 0016 | 0019 | | | 1 | 0.6 | + .2513 | + .0205 | + .0093 | + .0006 | 0056 | 0093 | 0105 | + .0041 | | + .0000 | 0013 | 0021 | 0023 | | | "_ | 0.4 | + .2512 | +.0196 | + .0085 | +.0003 | 0054 | 0088 | 0099 | | + .0016 | 0004 | 0018 | 0027 | 0030 | | | %
% | 0.2 | + .1905 | † | +.0053 | 0003 | 0039 | 0059 | 0065 | +.0027 | | 0011 | 0024 | 0032 | 0034 | | | " | <u> </u> | +.0295 | 0 | +.0005 | | +.0020 | | + .0027 | 0 | + .0023 | +.0063 | +.0101 | +.0126 | +.0135 | | | | 1.0 | +.3711 | +.0295 | +.0236 | +.1131 | +.1786 | +.2174 | | <u> </u> | 1 ^ | | | T . | | | | ا ـــ ا | 0.8 | | +.0466 | +.0208 | +.0012 | 0126 | 0218 | 0247
0235 | +.0093 | +.0042 | +.0004 | 0
0022 | 0 - 0039 | 0 | | | 3/8 | 0.6 | +.3757 | +.0442 | +.0193 | +.0007 | 0122 | 0198 | 0223 | | | | | 0038 | | | | 1 | 0.4 | +.3541 | +.0379 | +.0155 | 0003 | 0107 | 0167 | 0186 | +.0088 | +.0036 | 0007 | 0039
0054 | 0059
0075 | 0065
0082 | | | ا م | 0.2 | +.2133 | +.0210 | +.0075 | 0009 | 0059 | 0085 | 0093 | +.0042 | +.0009 | 0017 | 0034 | 0044 | 0047 | | | q/p | 0 | 0015 | 0 | +.0010 | +.0027 | +.0043 | +.0054 | +.0058 | 0 | +.0050 | +.0135 | +.0215 | +.0269 | _ | | | | | R _X Ry | 0015 | +.0303 | +.1666 | +.2644 | + .3220 | +.3410 | | 1.0000 | .0133 | 1.0270 | 1.0203 | 1.0200 | | | | 1.0 | +.5101 | | | | 0233 | 0383 | 0432 | 0 | 0 | 0 | 0 | 0 | 0 | | | . ~ | 0.8 | +.5331 | +.0807 | +.0349 | +.0013 | 0218 | 0353 | 0397 | +.0161 | +.0068 | 0001 | 0049 | 0077 | - 0086 | | | 1/2 | 0.6 | + .4805 | +.0712 | +.0298 | 0000 | 0199 | 0313 | 0350 | +.0142 | +.0051 | 0026 | 0084 | 0120 | 0132 | | | n i | 0.4 | +.4148 | + .0545 | +.0209 | 0014 | 0156 | 0233 | 0258 | +.0109 | +.0026 | 0043 | 0094 | 0125 | 0135 | | | g/b | 0.2 | +.1928 | +.0250 | +.0087 | 0009 | 0063 | 0089 | 0096 | +.0050 | +.0015 | 0003 | 0008 | 0008 | 0007 | | | 0 | 0 | - 0294 | 0 | +.0019 | +.0050 | +.0080 | +.0100 | +.0107 | 0 | +.0094 | +.0252 | +.0399 | + .0499 | +.0534 | | | | | Rx Ry | 0294 | +.0482 | + .2263 | + .3559 | | + .4572 | | , | | | | | | | | 1.0 | + 8592 | +.1788 | +.0716 | 0010 | 0471 | 0726 | 0807 | 0 | 0 | 0 | 0 | 0 | 0 | | | 34 | 0.8 | | +.1552 | + .0607 | 0020 | 0414 | 0630 | 0698 | +.0310 | +.0112 | 0027 | 0119 | 0172 | 0190 | | | " | 0.6 | +.5989 | +.1207
+.0786 | + .0460
+ .0280 | 0033
0033 | 0336
0214 | 0498
0306 | 0549
0333 | +.0241 | +.0071 | 0067
0049 | 0166
0100 | 0225
0127 | 0245
0135 | | | ا م | 0.2 | +.1185 | + .0289 | + .0109 | + .0009 | 0034 | 0049 | 0053 | +.0058 | +.0060 | +.0115 | + .0186 | | + .0262 | | | % | 0 | 0694 | 0 | | | | + .0227 | +.0242 | 0 | +.0212 | | | | + 1212 | | | 1 - | | R _x R _y | 0694 | | | +.5271 | | +.6725 | | .02.12 | | .03.17 | | | | | | 1.0 | +1.2115 | + .2613 | +.0883 | 0105 | 0654 | 0927 | 1008 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0.8 | +.9558 | +.2146 | +.0727 | 0097 | 0551 | 0774 | 0840 | +.0429 | +.0134 | 0051 | 0464 | 0224 | 0243 | | | - | 0.6 | +.6250 | +.1547 | +.0525 | 0083 | 0411 | 0566 | 0611 | +.0309 | +.0090 | 0069 | 0169 | 0222 | 0238 | | | ", | 0.4 | +.3984 | + .0916 | +.0305 | 0043 | 0216 | 0290 | 0310 | +.0183 | +.0069 | +.0029 | + .0030 | + .0045 | +.0053 | | | 9/p | 0.2 | +.0434 | + .0303 | +.0127 | +.0047 | +.0033 | +.0042 | +.0048 | +.0061 | +.0149 | +.0339 | +.0542 | +.0689 | + .0742 | | | | 0 | 0939 | 0 | +.0074 | +.0199 | +.0311 | +.0384 | +.0409 | 0 | +.0369 | +.0996 | +.1556 | +.1919 | + . 2043 | | | | | R _x R _y | 0939 | | + .4453 | +.6760 | | + .8450 | | | | | | | | | | 1.0 | +1.6267 | | +.0700 | 0345 | 0730 | 0844 | 0865 | 0 | 0 | 0
0069 | 0 - 0143 | 0165 | 0169 | | | 3/2 | | | | + .0565 | | | | | | | | | | +.0049 | | | 10 | 0.6 | | +.1778 | +.0399 | 0195
0056 | 0385
0116 | 0422
0101 | 0422
0090 | +.0356 | | | | | +.0685 | | | ما | 0.4 | | | +.0239 | | | +.0273 | +.0296 | | | + | | +.1699 | | | | 0 | 0.2 | 1168 | 0 | | | | +.0668 | +.0702 | 0 | | | | +.3340 | | | | 1 1 | | Ry | 1168 | | | | | +1.0123 | | | | | | | | | | | | | | | 1 | | • | | | | | | | | | | | >- | | | | | | | | | | i | | | | | 471 | | | | | | | | | | | | 1 | , 7 | | | | | + | i } | Ĺ | | | | | | | | | / | p/p | | | | Free | | | ! | | | | | | , | | M*/ | ≯ /- | | | | | | 1 | Ł | į | | | Mome | nt = (Co | efficient |) (pb²) | | 一て沈 | R _x | | | | FIGURE 1.—Plate fixed along three edges, moment and reaction coefficients, Load I, uniform load. Reaction = (Coefficient)(pb) | | | | <u> </u> | | | | | | <u>I</u> | | | | | | |---------------|----------|-------------------------------|--|------------------|-------------|----------------|------------------|--------------|---------------------------------------|-------------|--------------|----------------|--------------|----------------| | | V/. | R. X/o | ļ <u>.</u> | | T | M _X | | | <u> </u> | · | , , | И _у | | | | | У/Ь | | | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | _ | 0.8 | +.0005 | +.0000 | +.0000 | +.0000 | | 0000 | 0000 | 0 | 0 | 0 | 0 | 0 | 0 | | × | 0.6 | +.0965 | | +.0017 | +.0001 | 0001 | 0002 | | | +.0001 | - | +.0001 | +.0001 | +.0001 | | 1 0 | 0.4 | | +.0051 | | +.0001 | 0014 | 0023 | 0026 | - | +.0003 | | 0003 | 0004 | 0005 | | % | 0.2 | +.1185 | +.0048 | +.0021 | +.0001 | 0013 | 0021 | 0024 | | +.0004 | | 0003 | 0006 | 0006
0007 | | 9 | 0 | + .0503 | 0 | +.0001 | +.0003 | +.0005 | +.0006 | +.0007 | 0 | | +.0016 | +.0025 | +.0031 | +.0033 | | | | R _K Ry | +.0503 | +.0116 | ÷.0568 | +.0893 | +.1082 | +.1149 | | | | | | | | | 1.0 | | | +.0006 | | 0002 | 0005 | 0007 | 0 | 0 | 0 | 0 | 0 | 0 | | 74 | 0.8 | | | + .0022 | | 0009 | 0019 | 0022 | +.0008 | +.0007 | +.0007 | +.0007 | +.0007 | +.0008 | | | 0.6 | + | +.0142 | +.0060 | | 0040 | 0064 | 0071 | +.0028 | | 0005 | 0016 | 0022 | 0025 | | - 4 | 0.4 | + | | +.0077
+.0051 | 0000 | 0052 | 0082 | 0092 | +.0037 | +.0013 | | 0024 | 0034 | 0037 | | a/p | 0.2 | +.0299 | 0 | + .0005 | +.0013 | +.0039 | +.0059 | +.0065 | +.0027 | +.0006 | | 0026 | 0034 | 0037 | | | H | | +.0299 | +.0241 | | +.1792 | +.2177 | + .2304 | <u> </u> | +.0024 | +.0063 | +.0100 | +.0126 | +.0134 | | | 1.0 | | +.0038 | +.0035 | +.0012 | 0014 | 0032 | 0039 | 0 | 0 | 0 | 0 | 0 | ō | | 3/8 | 0.8 | +.0694 | +.0127 | +.0068 | +.0012 | 0033 | 0061 | 0071 | + 0025 | +.0018 | +.0014 | +.0011 | +.0009 | +.0008 | | , E | 0.6 | +.2724 | +.0282 | +.0113 | 0004 | 0081 | 0124 | 0138 | +.0056 | +.0015 | 0020 | 0047 | 0064 | 0070 | | 11 | 0.4 | +.3440 | +.0330 | +.0123 | 0013 | 0097 | 0142 | 0156 | +.0066 | +.0013 | 0036 | 0073 | 0096 | 0104 | | 9/p | 0.2 | +.2181 | +.0201 | +.0067 | 0013 | 0058 | 0080 | 0087 | +.0040 | + .0005 | 0025 | 0046 | 0058 | 0062 | | | 0 | +.0016 | 0 | +.0010 | +.0026 | +.0041 | +.0051 | +.0055 | 0 | +.0050 | +.0131 | +.0206 | +.0256 | +.0274 | | - | | _ | +.0016 | +.0367 | +.1705 | +.2632 | +.3165 | +.3338 | | | | | | | | 1 1 | 1.0 | - | | | +.0025 | 0043 | 0089 | 0106 | 0 | 0 | 0 | 0 | 0 | 0 | | 2/ | 0.8 | | +.0257 | +.0128 | +.0015 | 0070 | 0122 | 0139 | +.0051 | | +.0013 | 0000 | 0009 | 0012 | | 1 ,, 1 | 0.4 | + .3937 | | + .0138 | 0017 | 0123
0130 | 0181
0178 | 0199
0193 | +.0084 | | 0049 | 0097 | ~.0126 | 0136 | | | 0.2 | | | +.0064 | 0021 | 0062 | 0078 | 0083 | +.0086 | +.0001 | 0075
0027 | 0132 | 0167
0052 | 0178 | | 9/p | 0 | 0203 | | +.0018 | | | +.0087 | +.0092 | 0 | | +.0230 | | | 0054
+.0461 | | | | R _X R _Y | | | +.2337 | +.3439 | | +.4241 | | .0030 | 1.0230 | 1.0334 | 0434 | 7.0461 | | | 1.0 | +.0479 | F.0445 | + .0243 | + .0028 | 0134 | 0230 | 0261 | 0 | 0 | 0 | 0 | 0 | 0 | | 34 | 0.8 | + .2273 | .0541 | + .0232 | +.0002 | 0150 | 0236 | 0263 | +.0108 | +.0046 | 0006 | 0046 | 0072 | - 0080 | | 1 1 | 0.6 | +.3991 | | | 0051 | 0185 | 0251 | 0271 | +.0123 | 0007 | 0116 | 0194 | 0240 | 0255 | | " | 0.4 | +.4133 | | | | | 0196 | - 0206 | +.0106 | 0030 | 0137 | 0206 | 0243 | 0254 | | 1% | 0.2 | | | | 0024 | 0044 | 0047 | 0046 | +.0047 | + | +.0008 | | +.0046 | +.0054 | | " | 0 | 0441 | | + .0038 | | | | +.0167 | 0 | 1019. + | +.0452 | +.0663 | +.0792 | + .0835 | | | 1.0 | R _X Ry
+.1608 | 0441
+.0753 | | +.3413 | +.4628
0209 | 0314 | + .5438 | | | | <u> </u> | | | | 1 h | 0.8 | | | | 0032 | 0205 | 0290 | 0346
0315 | 0
+.0151 | + .0051 | 0 0007 | 0 0083 | 0 | 0 | | - | 0.6 | + .4093 | | +.0183 | 0083 | 0211 | 0267 | 0282 | | | 0027
0160 | 0083
0241 | | 0125 | | " | 0.4 | +.3959 | | +.0094 | 0086 | 0153 | 0175 | 0180 | +.0110 | - | 0155 | 0201 | | 0221 | | 9 | 0.2 | +.1392 | +.0222 | + .0036 | 0011 | 0010 | 0001 | +.0003 | | | | | | +.0237 | | [| 0 | 0523 | 0 | +.0061 | +.0136 | +.0192 | +.0226 | +.0237 | 0 | +.0307 | +.0680 | +.0962 | +.1129 | + 1184 | | | | RX | | | | | +.5977 | +.6149 | | | | | | | | _, | 1.0 | +.3060 | | | | 0247 | 0290 | 0298 | 0 | 0 | 0 | 0 |
0 | 0 | | 3/2 | 0.8 | +.3324 | | | | | | | +.0184 | | | 0099 | 0116 - | 0120 | | 1 " + | 0.6 | +.3934 | - | | 0131 | 0194 | 0202 | | +.0152 | | 0184 | 0221 | | 0226 | | اما | 0.4 | +.3615 - | | + .0028 + | + .0030 | 0104
+.0064 | 0093
+ 0090 | 0087 | +.0102 | | 0107 | 0073 | | 0018 | | 9% | 0.2 | 0489 | | | | | +.0090
+.0331 | +.0099 | | | | | | 1719 | | 1 h | | Ry | | | +.5306 | | | +.6737 | <u> </u> | 10000 | | + . 1460 | +.1657 | 1719 | | · | | | 1 | | | | | | · · · · · · · · · · · · · · · · · · · | ··· | | | | | |
 | - ٥ مل | | | | | | | | | | | Y | | | | <i>y</i> . | | | | | | | | | | | | ↑ ~— | | | | - | <u> </u> | <u> </u> | 7 | 1 | η. | | | | | | | X | 1/0 | | | Free | | E | | | | | | | | | Mx | ↓ — | | | | 1 | | | 1- | | | Mom | ent = (Co | oefficient |)(p b 2) | | (1) | R. | | | | | | | • [| | 1 | React | ion = (C | oefficient | t)(pb) | | | Ry | | | | | ļ | E | Q. | · 🗐 | | | | | | | | 0 / | V^- | ^ | | | 1 | | - | | | | | | | | <i></i> | 4 | My | | Figure 2.—Plate fixed along three edges, moment and reaction coefficients, Load II, 2/3 uniform load. | | | | | | M | × | | | | | N | 1 _y | | | |------|---------------------------------------|-------------------------------|------------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|----------------| | | У/Ь | R _X X/g | | 0.2 | 0,4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1.0 | 0000 | 0000 | 0000 | +.0000 | +.0000 | +.0000 | | 0 | 0 | 0 | 0 | 0 | 0 | | 🕏 | 0.8 | 0001 | +.0000
+.0001 | +.0000 | +.0000 | +.0000 | 0000 | 0000 | +.0000
+.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | н | 0.4 | +.0286 | +.0013 | +.0006 | | 0003 | 0006 | 0007 | +.0003 | | +.0001 | 0000 | 0000 | +.0001 | | 9/p | 0.2 | +.1109 | +.0044 | +.0019 | +.0000 | 0012 | 0019 | 0022 | +.0009 | +.0003 | - 0001 | 0005 | 0007 | 0008 | | 0, | ٥ | +.0505 | 0 | +.0001 | +.0003 | +.0005 | +.0006 | +.0007 | 0 | +.0006 | +.0016 | +.0025 | +.0031 | +.0033 | | | 1.0 | 0013 | +.0505 | +.0125
0000 | +.0570 | +.0893 | +.1083 | +.0000 | | | | | | | | _ | 0.8 | 0009 | +.0001 | +.0001 | +.0001 | 0000 | +.0000
0001 | 0001 | +.0000 | + .0000 | +.0001 | +.0001 | +.0002 | +.0002 | | 7, | 0.6 | +.0039 | +.0011 | | +.0002 | 0003 | 0006 | | +.0002 | +.0002 | +.0003 | +.0004 | +.0004 | +.0004 | | H | 0.4 | +.0653 | | +.0025 | _ | 0015 | 0025 | | +.0011 | +.0005 | +.0000 | 0004 | 0006 | 0007 | | 9/p | 0.2 | +.1703 | +.0105 | +.0034 | 0008 | 0032 | 0044 | 0047 | +.0021 | +.0001 | 0017 | 0032 | 0040 | 0043 | | | - | | 0
+.0354 | +.0004 | +.0011 | +.0017 | +.0021 | +.0023 | 0 | +.0022 | +.0057 | +.0087 | +.0107 | +.0114 | | | 1.0 | 0075 | 0001 | +.0002 | | 0000 | 0002 | 0003 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/8 | 0.8 | + .0020 | +.0012 | +.0008 | +.0003 | 0003 | 0006 | 0008 | +.0002 | +.0003 | +.0004 | +.0005 | +.0005 | +.0006 | | | 0.6 | +.0167 | +.0039 | +.0022 | +.0004 | 0010 | 0019 | 0022 | +.0008 | +.0007 | +.0006 | +.0006 | +.0005 | +.0005 | | " | 0.4 | +.0947 | +.0103 | +.0039 | 0004 | 0030 | 0044 | ~.0048 | +.0021 | +.0006 | 0008 | 0019 | 0027 | 0029 | | 9/p | 0.2 | +.1940 | +.0140 | +.0031 | 0025
+.0020 | 0043
+.0029 | +.0049 | 0051
+.0037 | +.0028 | 0009
+.0041 | +.0042 | +.0061
+.0146 | 0072 | 0076 | | | | R _X Ry | +.0171 | +.0623 | | +.2211 | +.2485 | +.2567 | | T.0041 | T.0099 | T.0146 | +.0175 | +.0184 | | | 1.0 | 0135 | +.0008 | +.0011 | +.0004 | 0004 | 0010 | 0012 | 0 | 0 | 0 | 0 | 0 | 0 | | ~ | 0.8 | +.0103 | +.0032 | +.0019 | +.0005 | 0008 | 0017 | 0020 | +.0006 | +.0005 | +.0005 | +.0005 | +.0005 | +.0005 | | | 0.6 | +.0305 | +.0068 | +.0033 | +.0003 | 0019 | 0031 | 0035 | +.0014 | +.0009 | +.0004 | 1000 | 0004 | 0005 | | "_ | 0.4 | +.1090 | +.0125 | +.0039 | 0011 | 0038
0040 | 0050
0043 | 0053
0043 | +.0025 | +.0002
0019 | 0021 | 0039 | 0050 | 0054 | | 9% | 0.2 | +.1846 | +.0131 | +.0015 | 0027
+.0029 | +.0040 | +.0047 | +.0049 | +.0026 | +.0066 | 0052
+.0144 | +.0202 | 0081
+.0236 | 0083
+.0247 | | | | R _X R _y | +.0093 | +.1028 | +.2064 | +.2593 | +.2836 | +.2905 | | 1.0000 | 1.0144 | 1.0202 | 1.0230 | 7.0247 | | | 1.0 | 0086 | +.0053 | +.0036 | +.0007 | 0017 | 0033 | 0038 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/4 | 0.8 | +.0270 | +.0079 | +.0038 | +.0003 | 0022 | 0036 | 0041 | +.0016 | +.0009 | +.0004 | 0001 | 0005 | 0006 | | 1 1 | 0.6 | +.0439 | +.0107 | +.0040 | 0006 | 0031 | 0043 | 0047 | +.0021 | +.0009 | 0006 | 0019 | 0028 | 003 | | "_ | 0.4 | +.1131 | +.0140 | +.0025
0006 | 0024
0030 | 0042
0031 | 0048
0029 | 0050
0027 | +.0028 | 0011
0036 | 0044
0063 | 0066
0070 | 0078
0070 | 0082
0069 | | % | 0.2 | +.0046 | 0 | +.0024 | +.0045 | +.0058 | | +.0067 | 0 | +.0119 | +.0225 | +.0291 | +.0326 | +.0336 | | 1 1 | | R _X Ry | +.0046 | +.1652 | +.2588 | +.2967 | +.3116 | +.3156 | | | | | | | | | 1.0 | +.0066 | +.0100 | +.0050 | +.0002 | 0030 | 0047 | 0052 | 0 | 0 | 0 | 0 | 0 | 0 | | - | 0.8 | +.0374 | +.0113 | +.0046 | 0003 | 0031 | 0045 | 0049 | +.0023 | +.0011 | +.0001 | 0008 | 0014 | 0015 | | " | 0.6 | +.0459 | +.0126 | +.0035 | 0013
0029 | 0035
0039 | 0044
0041 | 0046
0041 | +.0025 | +.0006
0022 | 0015
0057 | 0031
0074 | 0040
0081 | 0043
0082 | | ٥/p | 0.2 | +.1696 | +.0095 | 0016 | 0026 | 0031 | 0017 | 0016 | +.0019 | 0046 | 0058 | 0051 | 0042 | 0039 | | 6 | 0 | +.0083 | 0 | | +.0058 | +.0071 | +.0078 | +.0080 | 0 | | +.0288 | | +.0389 | +.0399 | | | | R _X Ry | +.0083 | +.2073 | +.2860 | +.3134 | +.3239 | +.3267 | | | | | | | | | 1.0 | +.0281 | +.0146 | +.0043 | 0014 | 0037 | 0043 | 0045 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/2 | 0.8 | +.0453 | | +.0034 | 0017
0023 | | | | +.0028 | +.0009 | 0005
0023 | 0013
0033 | 0016 | 0017 | | 1 11 | 0.6 | +.0409 | +.0130 | +.0017
0009 | 0029 | 0032
0028 | 0032
0025 | 0024 | +.0028 | 0002 | 0060 | 0061 | 0035
0056 | 0036
0054 | | اما | 0.2 | +.1801 | +.0067 | 0021 | 0015 | 0006 | 0001 | +.0000 | +.0013 | 0048 | 0030 | 0004 | +.0014 | +.0020 | | 0 | 0 | +.0221 | 0 | | +.0075 | +.0088 | +.0095 | +.0097 | 0 | +.0247 | +.0375 | +.0441 | | +.0483 | | | | ŘŽ | +.0221 | +.2561 | +.3114 | +.3277 | +.3334 | +.3349 | | | - | | | | | Free | | | | : | | | | efficient | | | Mx | Rx B | <u>/</u> 0 | | | mm | · · · · · · · · · · · · · · · · · · · | | -x 1 | ← P→ | x | Nedt (1 | - (O | | .,(pu) | | W | IVE SIGI | My
N CONV | → X | Figure 3.—Plate fixed along three edges, moment and reaction coefficients, Load III, 1/3 uniform load. | | | | | | N | A _x | | | | * | N | l _y | | | |--------|-------------|-------------------------------|------------|-------------|----------------|----------------|----------------------|------------------|------------|---------|--------------|----------------|----------------|----------------| | | y/b | R _X X/0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1.0 | | +.0004 | +.0002 | + | 0001 | 0002 | 0002 | 0 | 0 | 0 | 0 | 0 | 0 | | 8/ | 0.8 | +.0251 | +.0011 | +.0005 | | 0003 | 0005 | 0005 | - | | +.0000 | 0000 | 0001 | | | l u | 0.6 | +.0751 | +.0021 | +.0009 | +.0001 | 0006 | 0009 | 0016 | +.0004 | 1 | +.0000 | 0001 | 0002 | | | | 0.2 | +.0942 | +.0038 | +.0016 | +.0000 | 0010 | 0017 | 0019 | +.0006 | +.0003 | 0000 | 0002 | 0003 | | | 9/p | 0 | +.0460 | 0 | | +.0003 | +.0005 | +.0006 | +.0006 | 0 | +.0005 | +.0014 | +.0023 | +.0028 | +.0030 | | | | R _x Ry | +.0460 | +.0136 | +.0543 | +.0839 | +.1004 | +.1056 | | 1 | | | 1.0020 | 1.0030 | | | 1.0 | +.0147 | +.0022 | +.0012 | +.0002 | 0006 | 0012 | 0014 | 0 | 0 | 0 | 0 | 0 | 0 | | 1/4 | 0.8 | + | +.0046 | | +.0002 | 0012 | 0021 | 0024 | +.0009 | +.0005 | +.0002 | 0000 | 0002 | 0002 | | - 11 | 0.6 | +.1015 | +.0083 | | +.0002 | 0023 | 0038 | 0042 | +.0017 | +.0007 | 0000 | 0005 | 0009 | 0010 | | 4 | 0.4 | +.1494 | +.0114 | +.0049 | +.0001
0004 | 0032
0030 | 0051 | 0057
0047 | +.0023 | +.0008 | 0004 | 0013 | 0019 | 0021 | | 9/p | 0.2 | +.0304 | 0 | +.0004 | +.0010 | +.0016 | +.0020 | +.0021 | 0 | +.0020 | +.0052 | 0022
+.0081 | 0029
+.0100 | +.0107 | | | | | +.0304 | + 0309 | | +.1563 | +.1856 | +.1950 | <u> </u> | 17.0020 | 1.0032 | 1.0081 | 1 .0100 | +.0107 | | | 1.0 | +.0189 | +.0066 | +.0040 | +.0008 | 0020 | 0039 | 0045 | 0 | Q | 0 | 0 | 0 | 0 | | 3/8 | 0.8 | +.0885 | +.0117 | +.0056 | +.0006 | 0031 | 0054 | 0062 | +.0023 | +.0012 | +.0004 | 0002 | 0005 | 0007 | | | 0.6 | | +.0176 | +.0075 | +.0001 | 0049 | 0079 | 0088 | +.0035 | +.0013 | 0006 | 0020 | 0029 | 0032 | | " | 0.4 | +.2107 | +.0208 | +.0079 | 0007 | 0061 | 0090 | 0099 | + 0042 | +.0009 | 0019 | 0042 | 0056 | 0061 | | 0/p | Q .2 | | +.0145 | +.0045 | 0012 | 0042 | 0057 | 0061 | +.0029 | +.0001 | 0022 | 0039 | 0048 | 0051 | | | 0 | +.0102
R _x Ry | +.0102 | +.0008 | +.0020 | +.0030 | +.0038 | +.0040 | 0 | +.0039 | +.0099 | +.0152 | +.0188 | +.0200 | | - | 1.0 | +.0326 | +.0102 | +.0474 | +.1488 | +.2154 | +.2526 | +.2645
0097 | 0 | 0 | 0 | 0 | | | | ۱ ۵ | 0.8 | +.1315 | | <u> </u> | +.0007 | 0059 | 0099 | 0112 | +.0043 | +.0020 | +.0002 | 0011 | 0
0019 | 0
0022 | | 1/2 | 0.6 | +.1972 | +.0273 | +.0108 | 0005 | 0079 | 0119 | 0132 | +.0055 | +.0015 | 0020 | 0047 | 0064 | 0070 | | 1 11 | 0.4 | +.2421 | +.0277 | +.0092 | 0019 | 0082 | 0115 | 0125 | +.0055 | +.0004 | 0042 | 0076 | 0097 | 0104 | | q/p | 0.2 | +.1607 | +.0160 | +.0041 | 0017 | 0044 | 0055 | 0058 | +.0032 | 0002 | 0026 | 0039 | 0044 | 0046 | | 0 | 0 | 0045 | 0 | | +.0033 | +.0050 | +.0061 | +.0065 | 0 | +.0068 | +.0167 | +.0252 | +.0307 | +.0325 | | | | R _X R _Y | 0045 | | +.1942 | +.2699 | +.3108 | +.3236 | <u>.</u> . | | | | | | | | 0.8 | +.1061 | +.0406 | +.0196 | +.0013 | 0115 | 0190 | 0214 | 0 | 0 | 0 | 0 | 0 | 0 | | 3,4 | 0.6 | | +.0426 | +.0145 | 0003
0026 |
0119
0124 | 0184
0174 | 0205
0189 | + .0087 | +.0031 | 0012
0055 | 0042
0102 | 0061 | 0067 | | 1 11 | 0.4 | | +.0349 | + .0091 | 0039 | 0102 | 0130 | 0138 | +.0070 | 0011 | 0075 | 0102 | 0130
0137 | 0139
0143 | | 9/p | 0.2 | +.1337 | +.0163 | +.0031 | 0017 | | 0033 | 0033 | +.0033 | + .0001 | | | | + .0035 | | 0 | 0 | 0196 | 0 | + .0028 | +.0064 | +.0093 | + .0111 | +.0117 | 0 | +.0139 | | +.0465 | | +.0584 | | | | R _X R _Y | 0196 | | + . 2666 | +.3496 | +.3923 | +.4055 | | | | | | | | 1 1 | 1,0 | | +.0644 | +.0253 | 0013 | 0172 | 0252 | 0276 | 0 | 0 | 0 | 0 | 0 | 0 | | - | 0.8 | | +.0601 | +.0210 | 0028 | 0161 | 0226 | 0245 | +.0120 | +.0034 | 0026 | 0065 | | 0095 | | " | 0.6 | +.2485 | | +.0149 | 0047
0049 | | 0189
0118 | 0201
0122 | + .0103 | +.0003 | | 0125 | 0151 | 0159 | | 9% | 0.2 | +.1108 | | | 0006 | 0006 | | +.0003 | +.0074 | +.0021 | | 0099
+.0116 | | 0107
+.0175 | | | 0 | 0241 | | +.0044 | | | +.0161 | +.0169 | 0 | | | | | + .0845 | | | | R _X R _y | 0241 | - | | +.4038 | | +.4584 | | | | | | | | | 1.0 | +.3127 | +.0857 | +.0207 | 0087 | 0199 | 0232 | 0238 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 % | 0.8 | _ | | | 0086 | 0172 | 0194 | 0198 | +.0146 | +.0023 | 0042 | 0072 | 0082 | - 0085 | | 1 " 1 | 0.6 | | | +.0094 | | 0134 | 0142 | 0141 | +.0112 | 0013 | 0077 | 0096 | 0096 | 0094 | | ا مي ا | 0.4 | | +.0359 | | | 0065 | 0057 | 0053 | +.0072 | 0021 | | | | +.0059 | | 6 | 0.2 | 0204 | | + .0021 - | | | | +.0076
+.0252 | | | | | | + .0474 | | 1 h | | Ry | | + .2452 | | | | + .5047 | 0 | +.0396 | +.0791 | +.1062 | + .1214 | +.1262 | | /
/ | | 1 | | | | | nt = (Go
on = (Co | | | | Mx (| R _x | \sqrt{0} | → x | | | | | <u>_</u> v | | | | | | | | w | Y | М, | | FIGURE 4.—Plate fixed along three edges, moment and reaction coefficients, Load IV, uniformly varying load. | | | | | | | Λ _x | | | T | | N | | | | |--|--------------------|---------------------------------------|-----------------|-------------|---------------|------------------|--------------|----------------------|----------|--------------|---------------|----------------|------------------|----------------| | 1 | y/b | R _X X/a | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.0 | T | | - | 1.0 | _ | +.0000 | | | | 0000 | | | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | 1/8 | 0.8 | +.0002 | +.0000 | +.0000 | | + | 0000 | | | +.0000 | | | | +.0000 | | _ | 0.6 | +.0142 | + .0006 | | +.0000 | 0002 | 0003 | 0003 | | +.0001 | | 0000 | 0000 | 0000 | | 10 | 0.4 | +.0499 | +.0021 | +.0009 | | 0006 | 0009 | | +.0004 | +.0002 | +.0000 | 0001 | 0002 | 0002 | | \\ \phi \phi | 0.2 | +.0818 | +.0032 | | + .0000 | 0009 | | | | +.0003 | 0001 | 0003 | 0004 | 0005 | | " | <u> </u> | +.0437 | 0 | +.0001 | | +.0004 | | | 0 | +.0005 | +.0014 | +.0021 | +.0026 | +.0028 | | | 1.0 | | +.0437 | +.0145 | +.0537 | | +.0959 | | <u> </u> | | | , | | | | 1 _ | 0.8 | + | +.0006 | +.0004 | | 0000 | 0001 | 0001 | 0 | 0 | 0 | 0 | 0 | 0 | | 1/4 | 0.6 | +.0323 | | | + | 0008 | 0014 | 0017 | | +.0001 | | +.0002 | 0003 | +.0003
0000 | | 111 | 0.4 | +.1011 | +.0075 | +.0031 | 0000 | 0021 | 0033 | - | | +.0005 | 0003 | 0010 | 0014 | 0015 | | م ا | 0.2 | +.1286 | +.0084 | +.0030 | 0005 | + | | 0038 | +.0017 | +.0002 | 0010 | 0020 | 0027 | 0029 | | 0 | 0 | +.0308 | 0 | +.0004 | +.0009 | +.0014 | +.0018 | +.0019 | 0 | +.0019 | +.0047 | | +.0088 | +.0093 | | ļ | | R _X Ry | +.0308 | | +.1011 | | +.1695 | +.1773 | | | | | | | | | 1.0 | 0104 | +.0005 | +.0007 | +.0003 | 0002 | 0006 | 0008 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/8 | 0.8 | | +.0027 | +.0017 | +.0004 | 0007 | 0014 | 0016 | +.0005 | +.0005 | +.0005 | +.0006 | +.0006 | +.0006 | | 1 11 | 0.6 | +.0558 | +.0074 | +.0034 | +.0002 | 0020 | 0034 | 0038 | +.0015 | +.0008 | +.0001 | 0004 | 0007 | 8000. | | ا ما | 0.4 | | + 0131 | +.0047 | 0006 | 0039 | 0056 | 0061 | +.0026 | +.0004 | 0015 | 0031 | 0041 | 0044 | | q/ _p | 0.2 | +.1457
+.0155 | 0 | +.0031 | +.0012 | +.0024 | +.0030 | +.0032 | +.0023 | 0002 | 0023 | 0038 | 0047 | 0050 | | | _ | R _x R _y | +.0155 | +.0549 | +.1389 | +.1907 | +.2183 | +.2269 | | +.0033 | +.0081 | +.0122 | +.0149 | +.0158 | | \vdash | 1.0 | - | +.0025 | | +.0007 | 0009 | 0021 | 0025 | 0 | 0 | 0 | 0 | 0 | - | | , | 0.8 | | +.0063 | + .0034 | +.0006 | 0017 | 0031 | 0036 | +.0013 | | | | +.0003 | | | 1/2 | 0.6 | +.0763 | +.0118 | +.0049 | - ,0001 | 0034 | 0052 | 0058 | +.0024 | +.0009 | 0005 | 0016 | 0024 | 0026 | | - 11 | 0.4 | +.1567 | +.0165 | +.0049 | 0016 | 0050 | 0067 | 0072 | +.0033 | 0001 | 0033 | 0056 | 0071 | 0075 | | q/ _p | 0.2 | +.1409 | +.0119 | +.0023 | 0018 | 0034 | 0040 | 0041 | +.0024 | 0008 | 0032 | 0045 | 0052 | 0054 | | 0 | 0 | +.0062 | 0 | +.0011 | +.0026 | +.0037 | +.0045 | +.0047 | 0 | +.0056 | +.0129 | +.0187 | +.0223 | +.0235 | | | | | +.0062 | | | +.2283 | +.2546 | +.2625 | | | | | | | |]] | 1.0 | | +.0108 | | +.0010 | 0034 | 0060 | 0069 | 0 | 0 | 0 | 0 | 0 | 0 | | 34 | 0.8 | | | +.0065 | +.0003 | 0040 | 0064 | 0072 | +.0029 | | +.0002 | 0008 | 0014 | 0017 | | 1 1 | 0.6 | · · · · · · · · · · · · · · · · · · · | +.0178 | | 0013 | 0053 | 0072 | 0078 | +.0036 | | 0024 | 0046 | 0060 | 0065 | | ا ا | 0.2 | | +.0190 | +.0007 | 0031
0021 | 0058
0026 | 0068
0025 | 0071
0024 | +.0038 | 0017
0016 | 0061
0031 | 0089 | 0104 | 0109 | | 2 | 0.2 | 0003 | 0 | +.0021 | | | | +.0072 | 0 | | | 0031
+.0300 | - 0028
+ 0345 | 0026 | | | | R _x R _y | 0003 | +.1334 | | | | +.3005 | _ '] | 0101 | .0220 | * .0300 | 7.0343 | 1.0333 | | | 1.0 | _ | | +.0088 | +.0001 | 0055 | 0084 | 0093 | 0 | 0 | 0 | 0 | 0 | 0 | | _ | 0.8 | +.0718 | + .0202 | +.0077 | 0007 | 005 5 | 0079 | 0086 | +.0040 | +.0016 | 0003 | 0019 | 0028 | 0031 | | ,, [| 0.6 | +.0990 | + .0208 | +.0055 | 0023 | 0060 | 0075 | 0079 | +.0042 | 0001 | 0038 | 0063 | 0076 | 0081 | | | 0.4 | $\overline{}$ | +.0189 | +.0021 | 0037 | 0055 | 0060 | 0061 | +.0038 | 0031 | 0074 | 0094 | 0102 | 0104 | | 9% | 0.2 | | +.0098 | 0002 | 0017 | 0014 | 0010 | 8000 | +.0020 | 0017 | 0014 | +.0004 | + .0020 | + .0026 | | 1 1 | | +.0011 | | | | | | +.0092 | 0 | +.0158 | +.0300 | + .0393 | +.0445 | +.0461 | | | | | +.0011 | +.1712 | \rightarrow | | | +.3202 | | | | | | | | ~ | 1.0
0. 8 | +.0673 | | | | 0066 | 0078
0067 | 0080 | +.0050 | 0 | 0
0012 · | 0
0025 | 0
0030 - | 0031 | | 3, | 0,6 | | | +.0037 | 0030 | | 0056 | | | | | | | 0064 | | 11 | 0.4 | | +.0168 | 0004 | 0038 | | 0035 | 0033 | | | 0069 | 0065 | | - 0051 | | _o | 0.2 | | +.0075 | 0007 | | | | + .0019 | | | $\overline{}$ | | +.0118 | | | 0 [| 0 | +.0110 | | +.0051 | | | | +.0122 | | | | +.0536 - | +.0591 | +.0608 | | | | Ry | +.0110 | + 2226 | +.2954 | +.3224 | +. 3329 | +.3356 | | | | | | | | | * | | | | | | | | | | | ~ | | | | ← 0> | o - | بو | | | | | | | | | | i | | | | F; | | | _ | | _ | | | | | | | \mathcal{L} | | | | Free | | | | | [| | | | | | w / | 41 | P | | | | ! | | | | 1 | Mom | ent = (Co | a e f f iainn | 41/ab21 | | M* | <u>זיין −</u> | -1 | | | | | | | ¥ | | | | | | | | Rx | 1 | | | | | 1 | | <u> </u> | 1 | React | ion = (C | oetticien | T)(pb) | | | Ry | 47 | → X | | | ! | | | a E | | | | | | | بر | <u> </u> | ν | • | | | | | | 1 <i>E</i> | | | | | | | 🛩 | Ψ | / My | | | <i></i> | Viiin. | ,,,! ! | - -x | Y | ш. | | | | | | W | · | | | | | | | | -∍ip | - 4- | | | | | | POSITI | VE SIGN | ONVI | ENTION | FIGURE 5.—Plate fixed along three edges, moment and reaction coefficients, Load V, 2/3 uniformly varying load. ## MOMENTS AND REACTIONS FOR RECTANGULAR PLATES | 1.0 | | | | | | | Иx | | | | | N | /ly | | |
--|---------------------------|----------|--|--------------|--------------|--------------|-------------|---------------|--|-------------|----------|--------------|------------------|-------------|--------------| | 1.0 | | y/b | R _X X/O | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 10 | 0 | 0.2 | T | | 1 0 0 | T . ^ | | 0.8 -0.000 -0.0 | | <u> </u> | | | | - | | | + | | _ | | + | | 1.0 | | 0.6 - 0.001 + .0000 + .0000 | _ | | | | | | | | | | | | | | 0 | | 1 | 🛎 | 0.6 | + | + | + | 1 | | | | | | | | | | | 0 2 + 0.458 0.017 0.0007 0.0008 0.0007 0.0008 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0001 0.0002 0.0002 0.0003 | 1 | | · | | + | | | + | 1 | | + | | | | | | 10 | ا م | 0.2 | | +.0017 | + | - | | · | | | + | | | | | | 10 | % | | † | | + | + | | + | + | + | + | | <u> </u> | | 0002 | | 1.0 | | <u> </u> | _ | | | | | | | | 14 .0003 | [+.0012 | 14.0018 | +.0022 | +.0023 | | 0.8 | | 1.0 | | | - | | + | + | | _ | 1 0 | 1 0 | 0 | _ | 0 | | 0.6 | | | | | | | | | + | | + | | | | | | 10 | 😕 | 0,6 | | +.0002 | | + | | + | | | | | | | +.0001 | | 0.2 0.6631 0.040 0.0013 0.0003 0.0012 0.0016 0.0008 0.0006 0.0006 0.0012 0.0015 0.001 | 1 11 1 | 0.4 | +.0127 | +.0014 | | | | | | | | | <u> </u> | | | | 1.0 -0.002 -0.001 -0.001 -0.002 -0.000
-0.000 -0.0 | ا م ا | 0.2 | +.0693 | | | + | | + | | 4 | | + | | | +.0000 | | 1.0 -0.002 -0.001 -0.001 -0.002 -0.000 -0.0 | 0 | J | +.0297 | 0 | +.0003 | | | | | · | + | | | | +.0058 | | 1.0 -0.002 -0.000 +0.000 +0.000 +0.000 -0.000 -0.000 0 0 0 0 0 0 0 0 | 1 1 | | | +.0297 | | | | | | | 1.0014 | 1.0002 | 1.0040 | 1.0055 | T.0038 | | 0 | | 1.0 | 0022 | | | | | · | | 0 | Γ ο | 0 | 0 | 0 1 | 0 | | 11 | | 0.6 | +.0002 | +.0003 | +.0002 | t | | | | | | | | | | | 11 | m | 0.6 | | _ | | | | | | | | | | | +.0002 | | 0.2 + | 11 | | + 0216 | | | | | | | _ | | | | | | | 10 | ا م ا | | | | | | | - | | | | | | | 0005 | | 10 | 6 | | | | | | | | | | | | | | 0029 | | 1.0 | 1 1 | - | _ | | | | | | | | 1.0020 | +.0044 | +.0063 | +.0075 | +.0078 | | 0.8 +.0024 +.0008 +.0005 +.000 00020004 0005 +.0002 +.0002 +.0002 +.0002 +.0002 0004 0005 0008 0009 +.0004 0003 +.0002 +.0002 00000 0000 00000 00000 0000 0000 00000 00000 0000 00000 | | 1.0 | _ | | | | | | | 0 | 1 0 | 0 | 0 | Δ . | _ | | 0.6 +.0074 +.0018 +.0009 +.0001000500080009 +.0004 +.0003 +.0002 +.0001000000 - | ۱ . ا | | | | | | | | | | | | | | | | 11 | 🗠 | | | | | | | | | | | | | | - | | 0.2 +.0769 +.0050 +.0004001100150016 +.0015 +.0010 +.00070020002800320 0 +.0203 | I F | | | | | | | | | | | | | | 0000
0013 | | 1.0 0032 +.0013 +.0009 +.0002 0004 0009 0010 0 0 0 0 0 0 0 0 0 | أما | | | | | | | | | | | | | | 0033 | | 1.0 0032 +.0013 +.0009 +.0002 0004 0009 0010 0 0 0 0 0 0 0 0 0 | 6 | 0 | | | | | | | | | | | | | | | 1.0 | | | | +.0203 | , | | | | | | 1.0001 | 1.0003 | 1.0000 | 1.0037 | *:0101 | | 0.8 +.0068 +.002 +.0010 +.000100060011 +.0004 +.0003 +.0001000000010 0.6 +.0112 +.0029 +.00110001000800120013 +.0005 +.000300010004000700 0.4 +.0270 +.0040 +.00080007001200130014 +.00080010001600200 0.2 +.0733 +.004200040012001200100010 +.000800150026002900300 0 +.0214 0 +.0010 +.0018 +.0023 +.0025 +.00250025 +.0092 +.0113 +.0124 +.0 0 +.0214 0 +.0008 +.0013 +.000100080012001400150026002900300 0 +.0214 1.090 +.1446 +.1568 +.1612 +.1623 1.0 +.0007 +.0026 +.0013 +.0001000800120014 0 0 0 0 0 0 0 0.8 +.0096 +.0030 +.00120001000800120013 +.0006 +.0003 +.00000002000300 0.6 +.0119 +.0034 +.0010000400100012 +.0017 +.0006 +.0003 +.00000002000300 0.2 +.0726 +.003400080010000800110011 +.000800040014001900210 0 +.0257 0 +.0014 +.0022 +.0026 +.0028 +.0029 0 +.0071 +.0111 +.0132 +.0141 +.0 008 +.0118 +.0037 +.00120004001000110012 0 0 0 0 0 0 0 0 +.0257 0 +.0014 +.0022 +.0026 +.0028 +.0029 0 +.0071 +.0111 +.0132 +.0141 +.0 008 +.0118 +.0037 +.0009000400090000 +.00070007000900060008000800100010001100110012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1.0 | | | | | | | | . 0 | 0 | 0 1 | 0 1 | 0 1 | 0 | | 0.6 +.0112 +.0029 +.00110001000800120013 +.0005 +.00030001000400070 0.4 +.0270 +.0040 +.00080007001200130014 +.000800010010001600200 0.2 +.0733 +.004200040012001200100010 +.000800150026002900300 0 +.0214 | | | | | | | | | | | | | | | 0001 | | 1 | ½ | 0.6 | | | | | | | | | | | | | 0007 | | 0.2 +.0733 +.00429004001200120010 +.000800150026002900300 0 +.0214 0 +.0010 +.0018 +.0023 +.0025 +.0025 0 +.0052 +.0092 +.0113 +.0124 +.0 \[\begin{array}{cccccccccccccccccccccccccccccccccccc | | 0.4 | | | | | | $\overline{}$ | | | | | | | 0021 | | 0 + 0214 0 + .0010 + .0018 + .0023 + .0025 0 + .0052 + .0092 + .0113 + .0124 + .0 Rx Ry + .0214 + .1090 + .1446 + .1568 + .1612 + .1623 1.0 + .0007 + .0026 + .0013 + .0001 0008 0012 0014 0 0 0 0 0 0 0.8 + .0096 + .0030 + .0012 0001 0008 0012 0013 + .0006 + .0003 + .0000 0002 0003 0000 0.6 + .0119 + .0034 + .0010 0004 0010 0012 0012 + .0007 + .0002 0003 0008 0010 0010 0.4 + .0254 + .0039 + .0003 0008 0011 0011 0011 + .0004 0014 0019 0021 0010 0.2 + .0726 + .0034 0008 0010 0008 0007 0007 + .0007 0019 0026 0025 0022 0003 0 + .0257 0 + .0014 + .0022 + .0026 + .0028 + .0029 0 + .0071 + .0111 + .0132 + .0141 + .0037 + .0013 + .0014 0009 0010 0010 0010 + .0007 + .0003 0001 0003 0004 0000 0 | | 0.2 | +.0733 | +.0042 | | | | | | | + | | | + | 0030 | | 1.0 | 6 | 0 | +.0214 | 0 | +.0010 | | | | | | | | - | | +.0127 | | 1.0 | | | R _X Ry | +.0214 | +.1090 | | | | | | | | | | | | 0.8 +.0096 +.0030 +.00120001000800120013 +.0006 +.0003 +.000000020003000800100000 | | 1.0 | +.0007 | +.0026 | +.0013 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0.6 +.0119 +.0034 +.0010000400100012 +.0007 +.0002000300080010001 0.4 +.0254 +.0039 +.00030008001100110011 +.0008000400140019002100 0.2 +.0726 +.003400080010000800070007 +.0007001900260025002200 0 +.0257 | _ [| 0.8 | +.0096 | + .0030 | +.0012 | 0001 | 0008 | 0012 | 0013 | +.0006 | | | 0002 | | - 0004 | | 0.4 +.0254 +.0039 +.0003000800110011 +.0008000400140019002100 0.2 +.0726 +.003400080010000800070007 +.0007001900260025002200 0 +.0257 | i [| 0.6 | +.0119 | +.0034 | +.0010 | 0004 | 0010 | | | | | | | | 0011 | | 0.2 +.0726 +.003400080010000800070007 +.000700190026002500220020 | Г ''_ Г | 0.4 | +.0254 | +.0039 | +.0003 | 0008 | 0011 | 0011 | 0011 | | | | | | 1,000 | | 1.0 | 2 | 0.2 | +.0726
 +.0034 | 0008 | 0010 | 0008 | | | | | | | | 0022 | | Rx Ry +.0257 +.1258 +.1535 +.1615 +.1643 +.1651 1.0 +.0063 +.0038 +.00120004001000110012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ا ٽ | 0 | +.0257 | 0 | +.0014 | +.0022 | +.0026 | +.0028 | +.0029 | | | | | | 0144 | | 0.8 +.0118 +.0037 +.00090004000900100010 +.0003000100030004000
0.6 +.0107 +.0035 +.00040006000800080008 +.0007 +.0000000600080009001
0.4 +.0216 +.003300030008000800070006 +.0007000900150016001600 | Г | | R _X R _y | +.0257 | +.1258 | +.1535 | +.1615 | +.1643 | +.1651 | | | | | | | | 0.6 +.0107 +.0035 +.0004000600080008 +.0007 +.0000000600080009000 0.4 +.0216 +.003300030008000800070006 +.00070009001500160015000 0.2 +.0789 +.002300090007000400030002 +.00050022001900120008000 0 +.0352 | | 1.0 | +.0063 | +.0038 | +.0012 | | | | $\overline{}$ | 0 1 | 0 | 0 | 0 | 0 | 0 | | 0.6 +.0107 +.0035 +.0004000600080008 +.0007 +.0000000600080009000 0.4 +.0216 +.003300030008000800070006 +.00070009001500160015000 0.2 +.0789 +.002300090007000400030002 +.00050022001900120008000 0 +.0352 | | 0.8 | +.0118 | +.0037 | + .0009 | 0004 | | | | | | | | | 0004 | | 0.4 +.0216 +.00330003000800070006 +.0007000900150016001600150016001 | ທີ | 0.6 | +.0107 | +.0035 | +.0004 | 0006 | 0008 | | | | | | | | 0009 | | 0.2 +.0789 +.002300090007000400030002 +.00050022001900120008000 | - 11 | 0.4 | +.0216 | +.0033 | 0003 | 0008 | 0008 | 0007 | 0006 | | | 0015 | 0016 - | 0015 - | 0014 | | Ry +.0352 +.1434 +.1609 +.1653 +.1668 +.1671 | ٩ [| 0.2 | +.0789 | ₩.0023 | 0009 | 0007 - | 0004 | 0003 | 0002 | +.0005 | | | 0012 - | 0008 - | 0006 | | | ٥ ً | 0 | +.0352 | 0 | +.0019 | +.0027 | +.0031 | +.0033 | +.0033 | 0 | +.0097 | +.0137 | 1.0155 | 1.0164 | .0166 | | F: 1 | | | Ry | +.0352 | +.1434 | +.1609 | +.1653 | +.1668 | +.1671 | | | | | | | | Ry (COETTICIENT) (PD) | 0 >
Free | 0- | | | | | | | | | | Mx | R ₁ , | | → x | | F | I | | 1 | . | N | / _x | | | ľ | - | | VI y | | | |-----------------|--|---|---------|---------------|--------------|----------------|----------------|-------------|-------------|--------------|----------|----------------|--------------|--------------| | | У/ь | R _X X/o | - | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | T 0 = | 1 | | — — | 1.0 | 0000 | 0000 | 0000 | 0000 | | | | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 0.8 | 0000 | 0000 | 0000 | +.0000 | + 0000 | + | + | 0000 | 0000 | +.0000 | +.0000 | 0 | 0 | | _% | 0.6 | 0000 | 0000 | +.0000 | | | + | | 0000 | + 0000 | +.0000 | +.0000 | +.0000 | +.0000 | | - 11 | 0.4 | 0003 | +.0000 | +.0000 | +.0000 | | + | | +.0000 | +.0000 | + 0000 | + 0000 | +.0000 | +.0000 | | مي ا | 0.2 | +.0115 | +.0004 | +.0002 | +.0000 | 0001 | 0002 | | | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | 8 | 0 | +.0235 | 0 | +.0001 | +.0002 | +.0002 | +.0003 | +.0003 | 0 | +.0003 | +.0008 | +.0011 | +.0014 | +.0014 | | | | Ri Ry | +.0235 | +.0207 | +.0430 | +.0559 | +.0624 | +.0650 | † · · · · | • | | | 1 | | | | 1.0 | 0000 | 0000 | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>'</u> * | 0.8 | 0001 | 0000 | + .0000 | +.0000 | + .0000 | 0000 | 0000 | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | - | 0.6 | 0001 | +.0000 | + .0000 | +.0000 | 0000 | | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | + 0000 | | " | 0.4 | +.0009 | +.0002 | +.0001 | +.0000 | 0000 | | 0001 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | q/ _p | 0.2 | + 0174 | +.0009 | +.0003 | 0001 | 0002 | 0003 | 0004 | +.0002 | +.0001 | 0001 | 0001 | 0002 | 0002 | | | <u> </u> | +.0214 | 0 | + .0002 | + .0003 | + .0004 | | +.0005 | 0 | +.0008 | +.0016 | +.0021 | +.0024 | +.0025 | | | <u> </u> | | +.0214 | +.0406 | + .0623 | +.0720 | | +.0771 | | , | | , | , | | | | 1.0 | 0004 | 0000 | +.0000 | +.0000 | +.0000 | 0000 | 0000 | 0 | 0 | <u> </u> | 0 | 0 | 0 | | 3/8 | 0.8 | 0001 | +.0000 | +.0000 | +.0000 | 0000 | 0000 | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | | 0.6 | +.0004 | +.0002 | +.0001 | +.0000 | 0000 | 0001 | 0001 | +.0000 | +.0000 | + .0000 | + 0001 | +.0001 | +.0001 | | " | 0.4 | +.0028 | +.0005 | +.0002 | | 0001 | 0002 | 0003 | +.0001 | +.0001 | + 0001 | +.0000 | 0000 | 0000 | | 8 | 0.2 | +.0219 | +.0013 | +.0003 | 0002 | 0004 | 0004 | 0004 | +.0003 | +.0000 | 0002 | 0004 | 0005 | 0006 | | | - | +.0196 | +.0196 | +.0002 | +.0003 | +.0004 | +.0005 | +.0005 | 0 | + 0008 | +.0016 | +.0022 | +.0026 | +.0027 | | 1 | 1.0 | 0008 | + .0000 | +.0000 | +.0000 | 0000 | +.0789
0000 | +.0797 | | _ | | | | | | 1 | 0.8 | +.0003 | + .0001 | +.0001 | + 0000 | 0000 | 0001 | 0001 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0.6 | +.0010 | +.0003 | +.0002 | + 0000 | 0001 | 0001 | 0002 | +.0000 | +.0000 | +.0000 | +.0000 | | + .0000 | | 11 | 0.4 | +.0036 | +.0007 | +.0003 | 0000 | 0002 | 0003 | 0003 | +.0001 | +.0001 | 0000 | + .0000 | + .0000 | +.0000 | | | 0.2 | +.0214 | +.0012 | +.0001 | 0003 | - 0003 | 0003 | 0003 | +.0002 | 0001 | 0004 | 0001
0006 | 0001
0007 | 0002
0007 | | % | 0 | +.0202 | 0 | + 0002 | +.0004 | +.0006 | +.0006 | +.0006 | 0 | +.0011 | +.0022 | +.0028 | +.0031 | + .0032 | | 1 1 | | R, Ry | +.0202 | $\overline{}$ | +.0740 | +.0792 | +.0811 | +.0816 | <u> </u> | 1 | * .0022 | | +.0031 | 1.0032 | | | 1.0 | 0008 | | +.0002 | +.0000 | 0001 | 0001 | 0002 | 0 | 0 | 0 | 0 | 0 | 0 | |] 😽 [| 0.8 | +.0010 | + .0003 | +.0002 | +.0000 | 0001 | 0002 | 0002 | +.00011 | + .0000 | +.0000 | +.0000 | 0000 | 0000 | | 3/4 | 0.6 | +.0017 | +.0005 | +.0002 | 0000 | 0001 | 0002 | 0002 | +.0001 | +.0001 | +.0000 | 0000 | 0001 | 0001 | | " [| 0.4 | +.0039 | +.0008 | +.0002 | 0001 | 0002 | 0002 | 0002 | +.0002 | +.0000 | 0001 | 0002 | 0003 | 0003 | | 9/p | 0.2 | +.0206 | + .0010 | 0001 | 0003 | 0003 | 0002 | 0002 | +.0002 | 0003 | 0005 | 0006 | 0007 | 0007 | | 0 | 0 | +.0233 | 0 | | | +.0007 | + .0007 | +.0007 | 0 | +.0019 | +.0029 | +.0034 | +.0036 | +.0037 | | \vdash | | _ | | +.0690 | +.0791 | +.0817 | +.0825 | +.0827 | | | | | | | | 1 1 | 1.0 | 0002 | +.0004 | + | +.0000 | 0001 | 0002 | 0002 | 0 | 0 | 0 | 0 | 0 | 0 | | - | 0.8 | +.0015 | + .0005 | | 0000 | 0001 | 0002 | 0002 | +.0001 | +.0001 | +.0000 | 0000 | 0000 | 000 I | | 1 " | 0.6 | +.0019 | + | +.0002 | 0001 | 0002 | 0002 | 0002 | +.0001 | +.0001 | 0000 | 0001 | 0002 | 0002 | | اميا | 0.4 | +.0036 | | + .0001 | 0001 | 0002 | 0002 | 0002 | +.0001 | 0000 | 0002 | 0003 | 0003 | 0003 | | 8 | 0.2 | +.0206 | + .0008 | 0002 | | 0002 | 0002 | 0001 | +.0002 | 0004 | 0006 | 0006 | 0005 | 0005 | | | 0 | +.0270 | 0 | | | + .0008 | +.0008 | +.0008 | 0 | +.0023 | +.0033 | +.0038 | +.0039 | +.0040 | | \vdash | | | | | | +.0826 | | +.0831 | | | | | | | | ا ہا | 0.8 | +.0007
+.0019 | | + .0002 | 0001 | 0002 | 0002 | 0002 | 0 | 0 | 0 | 0 | 0 | -0 | | 1% | | | | | 0001 | 0001 | 0002 | | | + .0000 | 0000 | 0000 | | 1000. | | " | 0.6 | +.0017 | + .0006 | | | 1000. | 0001 | | | +.0000 | 0001 | 1000 | | - 0001 | | اما | 0.4 | +.0028
+.0228 | +.0005 | | 0001
0002 | 0001
0001 | 0001 | | +.0001 | 0001
0005 | 0002 | 0002
0004 | | 0002
0003 | | 8 | 0.2 | + 0332 | | | | +.0008 | | +.0009 | | +.0030 | | +.0042 | 1 | +.0043 | | j t | | | | | | | | | | | | | | | | ر
۵» | Ry + .0332 + .0786 + .0825 + .0831 + .0834 + .0834 | | | | | | | | | | | | | | | Free | | Moment = (Coefficient)(pb ²) Reaction = (Coefficient)(pb) | | | | | | | | | | | | | Figure 7.—Plate fixed along three edges, moment and reaction coefficients, Load VII, 1/6 uniformly varying load. | | T | | ľ | | | 1 _x | | | | | | A _y | | | |--|-----------
--|--------------|---------------|----------------|--|----------------|--|--------------|---------|---------|----------------|---------------|--------------| | | У/ь | Rx X/O | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 100 | 1.0 | | — | 1.0 | +6.1755 | | | | | +.1058 | | <u> </u> | +1.0000 | | | 0.8 | 1.0 | | | 0.8 | -3.0424 | - 1024 | | † | +.0299 | _ | 1 | + | 0047 | +.0096 | | +1.0000 | +1.0000 | | _% | 0.6 | 0473 | 0072 | | +.0014 | + | +.0037 | + | + | 0016 | 0021 | +.0208 | +.0280 | +.0304 | | 1 11 | 0.4 | +.0069 | 0001 | 0002 | 0002 | +.0000 | +.0001 | +.0002 | 0000 | 0001 | 0002 | 0003 | 0029
0004 | 0030
0004 | | 9/p | 0.2 | +,0006 | | +.0000 | 0000 | 0000 | 0000 | 0000 | | + 0000 | 0000 | 0000 | 0000 | 0000 | | 9 | 0 | +.0000 | 0 | +.0000 | +.0000 | | +.0000 | + .0000 | 0 | +.0000 | 1 | + 0000 | +.0000 | +.0000 | | | | RX RY | +.0000 | 0000 | 0000 | + .0001 | +.0001 | + .0001 | | | 1 | 1 | | 1 .0000 | | | 1.0 | +11.3102 | +.8269 | +.4129 | +.1755 | +.0432 | 0233 | 0435 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | | 4 | 0.8 | -5.0373 | 2113 | 0432 | + .0373 | +.0733 | +.0877 | +.0914 | 0423 | +.0215 | +.0849 | +.1351 | +.1666 | +.1773 | | -> | 0.6 | 6075 | 0707 | 0357 | 0041 | + .0193 | +.0333 | +.0379 | 0141 | 0096 | 0051 | 0007 | +.0026 | +.0038 | | - 11_ | 0.4 | 0291 | 0132 | 0092 | 0031 | +.0028 | +.0069 | +.0084 | 0026 | 0032 | 0045 | 0057 | 0066 | 0069 | | 1% | 9.0 | +.0114 | 0013 | 0014 | 0008 | + .0000 | +.0007 | +.0010 | 0003 | 0007 | 0014 | 0021 | 0026 | 0028 | | 0 | | +.0051 | 0 | +.0000 | 0000 | 0001 | 0001 | 0001 | 0 | +.0001 | 0000 | 0003 | 0005 | 0006 | | | | R _X N _Y | | +.0061 | | +.0058 | +.0016 | +.0010 | | | | | | | | | 1.0 | +14.6908 | | | +.1309 | 0194 | 0856 | _ | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | | 3/8 | 0.8 | -5.6047 | 1840 | _ | +.0825 | +.0850 | +.0767 | +.0727 | 0368 | +.0867 | + 2039 | +.2901 | +.3411 | +.3578 | | | 0.6 | - 1.4017 | 1521 | | + .0106 | +.0481 | +.0665 | _ | 0304 | 0070 | +.0220 | +.0490 | +.0676 | +.0743 | | " | 0.4 | 3181 | 0623 | | | +.0167 | +.0299 | +.0343 | 0125 | 0094 | 0067 | 0037 | 0013 | 0003 | | 9/p | 0.2 | +.0070 | 0141 | 0107 | 0040 | +.0026 | +.0071 | +.0086 | 0028 | 0044 | 0070 | 0093 | - 0108 | 0113 | | " | \vdash | +.0423 | 0 | 0003 | 0014 | 0028 | 0039 | 0044 | 0 | 0016 | 0071 | 0141 | 0197 | 0218 | | - | | _ | +.0423 | +.0795 | $\overline{}$ | 0593 | 1206 | 1433 | | | | | | | | | 1.0 | | | | +.0934 | 0518 | 1103 | 1262 | | +1.0000 | | +1.0000 | +1.0000 | | | 1/2 | 0.8 | -5.5284 | 0776 | | | +.0749 | | +.0362 | 0155 | +.1650 | +.3201 | + . 4235 | | +.4985 | | 1 1 | 0.6 | · · · · · · · · · · · · · · · · · · · | 1823 | | | +.0667 | | +.0757 | 0365 | +.0150 | | +.1345 | | +.1835 | | " | 0.4 | 6544
0091 | 1073
0300 | 0424
0187 | | +.0332 | | +.0515 | 0215 | 3800 | +.0088 | +.0259 | | +.0429 | | 9% | 0.2 | +.0985 | 0 | 0014 | 0042
0056 | +.0065
0102 | +.0124
0136 | + .0142 | 0060 | 0088 | 0120 | 0139 | | 0149 | | | | L | | +.1413 | 0567 | 2627 | | 0149 | <u> </u> | 0072 | 0279 | 0511 | 0681 | 0743 | | | 1.0 | +19.3123 | | | +.0554 | 0813 | 4024 | 4506
1528 | 41,0000 | 41,0000 | | 0000 T | | | | 🚙 | 0.8 | | | + | | +.0345 | 1371
0193 | 0363 | | | +.5006 | +1.0000 | | +.6669 | | \% | 0.6 | | | | | +.0631 | | +.0250 | | | +.2172 | +.3097 | +.3637 | +.3811 | | 0 | 0.4 | 9946 | | + | | +.0449 | | +.0326 | | +.0219 | +.0788 | +.1296 | $\overline{}$ | +.1741 | | ا م ا | 0.2 | 1100 | 0387 | | | +.0117 | | +.0083 | 0077 | 0061 | +.0020 | +.0130 | $\overline{}$ | +.0249 | | % | 0 | +.1491 | 0 | 0054 | 0138 | 0195 | 0222 | 0229 | 0 | 0271 | 0689 | 0977 | $\overline{}$ | 1145 | | | | R _X R _y | +.1491 | 0424 | 4227 | 6344 | 7143 | 7315 | | | | | | | | | 1.0 | +20.8157 | +1.7779 | +.2069 | 1598 | 2961 | 3543 | 3712 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | | _ [| 0.8 | -4.4625 | + .4653 | +.3317 | +.1241 | 0007 | 0631 | 0819 | +.0931 | +.4346 | +.6176 | +.7031 | +.7408 | +.7515 | | 1 [| 0.6 | -1.9908 | +.0543 | +.1755 | +.1153 | +.0420 | 0044 | 0196 | +.0109 | +.1828 | +.3423 | +.4443 | +.4975 | +.5138 | | | 0.4 | -1.1509 | 0490 | +.0715 | + .0727 | +.0431 | +.0193 | +.0110 | 0098 | +.0728 | +.1714 | +.2487 | +.2949 | +.3101 | | 9/p | 0.2 | 2816 | 0306 | +.0179 | +.0262 | + .0215 | +.0172 | +.0158 | 0061 | +.0155 | +.0568 | +.1011 | +.1338 | +.1457 | | | 0 | +. 1323 | 0 | 0096 | 0122 | 0064 | + .0008 | +.0039 | 0 | 0480 | 0610 | 0321 | +.0040 | +.0193 | | \vdash | | | | | 7216 | 6791 | 5624 | 5103 | | | | | | | | | 1.0 | +22.7458 | | | +.0139 | 0768 | 1026 | | | | | +1.0000 | | | | 3% | 0.8 | -4.4642 | | | | | | 0474 | | | _ | | +. 8395 | | | " | 0.6 | | | + 2360 | | | | | | | | | | +.7012 | | اما | 0.4 | | | | | | +.0498 | | | | +.3610 | | | +.5757 | | %
9/P | Ø. 2
0 | - | 0061 | | +.0523 | | +.0737 | +.0787 | | | +.2247 | | | +.4846 | | 1 1 | | +.0256
Ry | +.0256 | | +.0169
7706 | +.0536
3660 | +.0801
1029 | +.0894
0180 | 0 | 0515 | +.0846 | + . 2679 | +.4003 | ¥.4403 | | , | | | .0236 | . 3002 | . 1 100 | . 3000 | . 1029 | .0180 | - | | | | | | | | مال | | | | | | | | | | | Y | | | | Free | | | | | Y M | | | oefficient
oefficien: | | | - | | 1/0 | × | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | '_x | | | | | | | | W | IVE SIGI | , | ENTION | FIGURE 8.—Plate fixed along three edges, moment and reaction coefficients, Load VIII, moment at free edge. RESULTS 15 | | | | | <u></u> | N | 1 _x | | | Ī | | ı | vl _y | | | |--|--------------|-------------------------------|------------------|----------------|---------------|----------------|---|------------------------|----------|----------|----------------|-----------------|----------|---------------| | | y/b | R _X X/O | + | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 0.8 | | +.0471 | + | + 0007 | + | | · | 0 | 0 | 0 | 0 | 0 | 0 | | <u>8</u> | 0.6 | 0073 | + 0000 | 4 | +.0006 | • | | · | | +.0007 | | +.0014 | + 0017 | | | 11 | 0.4 | +.0005 | - 0000 | 4 | + 0000 | | • | | 0000 | • | ∳ – - + | - 0000 | * | +.0002 | | م ا | 0.2 | +.0000 | - 0000 | 0000 | | | | | 0000 | 0000 | + | 0000 | 4 | - 0000 | | 9 | 0 | +.0000 | 0 | +.0000 | 0000 | 0000 | 0000 | 0000 | 0 | +.0000 | 0000 | - 0000 | 0000 | | | | | R _X Ry | +.0000 | | +.0000 | +.0000 | +.0000 | ~.0000 | | | | | | | | | 1.0 | +2.3750 | • | +.0587 | | 0395 | + | 0667 | 0 | 0 | 0 | 0 | 0 | 0 | | - 4 | 0.8 | +.1072
0306 | + .0278 | 4 | | 0058 | • | | | +.0067 | | | +.0131 | | | 111 | 0.4 | 0120 | • | į. | + - | + | + .0001 | * - | 0001 | + | + .0004 | + | +.0043 | | | 9/p | 0.2 | 0020 | 0002 | | +.0000 | <u></u> | + .0001 | | 0000 | + | | | +.0001 | | | 0 | 0 | +.0002 | 0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0 | 0000 | 0001 | 0001 | 0001 | 0001 | | <u> </u> | | | + .0002 | +.0005 | | 0011 | 0013 | 0017 | | , | | | | | | | 1.0 | +3.3048 | · · | +.0947 | 4 | 0681 | 0996 | 1094 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/8 | 0.8 | +.3317 | +.0857 | - | +.0103 | 0190 | 0370 | 0431 | +.0171 | + | +.0226 | +.0261 | | +.0291 | | 11 | 0.6 | 0370
0433 | +.0189
+.0020 | + | +.0064 | +.0003 | 0099
0015 | 0123 | +.0038 | +· | +.0107 | ~ | +.0174 | - 1 | | ما | 0.2 | 0150 | 0004 | +.0004 | | +.0004 | +.0001 | 0000 | + 0004 | + 0017 | | +.0056 | +.0070 | - 1 | | q/p | 0 | 0006 | 0 | 0000 | 0001 | 0001 | 0000 | + | 0 | 0002 | 0003 | - 0003 | | 0002 | | | Ť | R _x R _y | 0006 | 0032 | 0087 | 0101 | 0095 | 0091 | <u> </u> | | .0000 | .0000 | .0002 | 0002 | | | 1.0 | +4.0661 | +.3938 | +.1268 | 0162 | 0957 | 1369 | 1497 | 0 | 0 | 0 | 0 | 0 | - | | 2/1 | 0.8 | +.6108 | | +.0846 | | 0376 | 0672 | 0769 | +.0331 | +.0330 | +.0366 | +.0393 | +.0407 | +.0412 | | | 0.6 | + .0095 | +.0555 | +.0391 | +.0130 | 0109 | 0268 | 0324 | +.0111 | | | + .0306 | +.0349 | | | " | 0.4 | 0659 | +.0139 | +.0140 | +.0071 | 0015 | 0079 | 0103 | +.0028 | + . 0063 | | +.0169 | +.0205 | | | a/b | 0.2 | 0470 | +.0012 | +.0036
0001 | +.0028 | +.0009 | +.0008 | + .0014 | +.0002 | +.0022 | | +.0085 | +.0107 | | | " | | 0139 | 0139 | 0341 | 0344 | 0141 | +.0069 | + 0154 | 0 | 0004 | +.0013 | +.0043 | +.0071 | +.0082 | | - | 1.0 | +5.2885 | +.6266 | +.1803 | 0331 | 1463 | 2036 | 2213 | 0 | 0 | 0 | 0 | 0 | - | | 3/4 | 0.8 | | +.3486 | +.1514 | +.0098 | 0788 | 1268 | 1420 | +.0697 | +.0618 | | +.0568 | +.0551 | +.0544 | | , w | 0.6 | +.1509 | +.1613 | + 0957 | +.0218 | 0346 | 0682 | 0791 | +.0323 | +.0421 | +.0546 | +.0633 | +.0679 | +.0694 | | 11 | 0.4 | 1083 | +.0588 | | +.0188 | 0088 | - 0267 | 0327 | +.0118 | +.0240 | | +.0548 | | +.0666 | | 9/p | 0.2 | | + .0096 | +.0170 | +.0116 | + 0050 | | 0005 | +.0019 | | | +.0503 | + | +.0672 | | " | 0 | - 0495
Rx Ry | 0
0495 | 1823 | +.0050 | +.0815 | +.2120 | +.2598 | 0 | +.0013 | +.0250 | +.0577 | +.0839 | +.0937 | | | 1.0 | | + .8094 | | \rightarrow | 1818 | - 2421 | - 2601 | 0 | .0 | 0 | 0 | 0 | | | | 0.8 | | +.5022 | | | 1093 | | | | | | | +.0655 | +.0644 | | - | 0.6 | +.2160 | +.2571 | +.1333 | +.0199 | 0529 | 0906 | 1021 | +.0514 | +.0697 | +.0873 | +.0978 | +.1030 | + 1046 | | | 0.4 | | | | | 0117 | | 0372 | +.0204 | +.0500 | | + | + | +.1349 | | 9% | 0.2 | 1 | | +.0304 | | | | | + .0038 | + | | + | | +.1764 | | | 0 | 1014 | | +.0020 | | | | +.0523 | 0 | +.0100 | +.0843 | +.1728 | +.2379 | +.2614 | | — | | R ₁ R _y | 1014
+.9388 | 3394 | | +.2910
1904 | +.5246
2162 |
+.6042
2210 | 0 | 0 1 | 0 | 0 | 0 | - | | ~ | 0.8 | +7.3629
+1.8569 | | | | | | 1423 | | | | | | +.1001 | | 3/2 | 0.6 | | | | 0015 | | | | | | | | | | | " | 0.4 | | | +.0862 | +.0257 | | +.0058 | | | | | | + | +.3076 | | ° | 0.2 | 5823 | +.0330 | +.0427 | + | | | | +.0066 | | | | | +.4378 | | 0 | 0 | - 1985 | | +.0125 | | | +.1144 | | 0 | +.0623 | +.2658 | +.4538 | +.5722 | +.6117 | | | | Ry | 1985 | 3944 | +.2295 | + . 7018 | +.9426 | +1.0130 | | | | | | | | ſ | 1 | | | | | | | | | | | Y | | | | | 0- | | | - | | | | | | | | ∤ | | | | <i>F</i>) | | - i ı | τ - | F | | | | | | | | И | 1/0 | | | Free | | | | | | | | | | | M., | - | -/ | | | | | | | | | | | pefficient | | | (t) | R. | | | | | | | . | | | React | ion = (G | oefficien [.] | t)(F) | | γ | Ry | 4 | v | | | ! | | | | | | | | | | ير | 10 J | | ~ ^ | | | | | | | | | | | | | / | ~ | / My | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | m | ,,,, , },\ | Ĺ-x | | π. | | | | | | W | | | | | | 1 | | | | | | | | | | POSIT | VE SIG | N CONV | INTION | Figure 9.—Plate fixed along three edges, moment and reaction coefficients, Load IX, line load at free edge. | | | | Γ | | | | | | | | | | | | |--------------|--|-------------------------------|-----------|--------------|----------------|----------------|-----------------------|----------------|------------------|---------------|----------------|----------------|----------------|----------------| | | | T vi | | | · | 1 _x | | | | | ٨ | A _y | , | | | | У/Ь | Y ₀ → | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | _ | 1.0 | Rx Ry
+.0063 | +.0063 | +.0809 | +.0996 | +.1127 | +.1204 | +.1229 | 0 | 0 | 0 | | | | | ~ | 0.8 | +.1242 | +.0049 | | +.0001 | 0013 | 0022 | 0025 | +.0010 | +.0004 | 0001 | 0004 | 000 6 | 0007 | | l u | 0.6 | +.1254 | +.0052 | +.0023 | +.0002 | 0014 | 0023 | 0027 | +.0010 | +.0005 | +.0000 | 0003 | 0005 | 0006 | | 1 % | 0.4 | +.1253 | +.0051 | +.0023 | +.0002 | 0014 | 0023 | 0027 | +.0010 | +.0005 | +.0000 | 0003 | 0005 | 0006 | | 0 | 0.2 | +.1185 | +.0048 | +.0021 | +.0001 | 0013
+.0005 | +.0006 | +.0007 | +.0010 | +.0004 | +.0001 | +.0025 | +.0006 | 0007 | | L | | Ry -> | +.0504 | +.0120 | +.0565 | +.0891 | +.1082 | | ├ ॅ | 11.0000 | 1+.0010 | 1+.0025 | 14.0031 | +.0033 | | | | R _x R _y | 0097 | | +.1053 | +.1482 | +.1728 | +.1808 | | | | | | | | < | 0.8 | 0097
+.2366 | +.0165 | +.0067 | 0002 | 0047 | 0073 | 00 8 1 | +.0033 | +.0009 | 0 | 0 | 0 | 0 | | 1 11 | 0.6 | +.2557 | +.0201 | +.0088 | +.0003 | 0056 | - 0073 | 0102 | +.0040 | +.0009 | 0003 | 0026 | 0036 | 0039
0030 | | | 0.4 | +.2530 | +.0196 | +.0085 | +.0002 | 0055 | | 0099 | +.0039 | +.0015 | 0004 | 0019 | 0029 | 0032 | | 1% | 0.2 | +.1908 | +.0138 | +.0053 | 0003 | 0039 | 0059 | 0066 | +.0028 | +.0007 | 0011 | 0024 | 0032 | 0035 | | 1 | - | +.0295 | +.0295 | +.0005 | +.0013 | +.0020 | | +.0027 | • | +.0024 | + .0063 | +.0101 | +.0126 | +.0135 | | | | R. R. | - 0466 | | +.1237 | +.1983 | | | <u> </u> | | | | | | | _ & | 1.0 | 0466 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3,8 | 0.8 | +.3265 | +.0301 | +.0109 | 0013 | 0089 | 0130 | 0143 | +.0060 | | 0038 | 0073 | 0095 | 0102 | | 11 | 0.6 | +.3819 | + .0403 | +.0161 | 0007 | - 0116 | 0177
0163 | 0197
0181 | +.0081 | +.0023 | 0028 | 0068 | 0094
0089 | 0103
0097 | | 1% | 0.2 | +.2164 | +.0211 | +.0075 | 0010 | 0059 | 0085 | | +.0042 | +.0008 | 0019 | 0038 | 0048 | 0052 | | " | 0 | 0013 | ٥ | +.0010 | +.0027 | +.0043 | | | 0 | +.0051 | +.0135 | | +.0269 | +.0288 | | <u> </u> | | Ry | 0013 | +.0310 | +.1684 | +.2663 | | +.3427 | | | | | | | | 1 | 1.0 | 0902 | 0902
0 | 0050
0 | +.1570 | + .2529 | + 3034 | +.3192 | 0 | 0 | 0 | 0 | Ó | ō | | \% | 0.8 | +.3904 | +.0412 | +.0128 | 0035 | 0126 | 0172 | 0186 | +.0082 | 0005 | ~.0083 | 0143 | 0180 | 0192 | | 1 11 | 0.6 | +.4751 | +.0572 | +.0197 | 0036 | 0172 | 0242 | 0263 | +.0114 | +.0013 | 0083 | 0159 | 0207 | 0224 | | 8 | 0.4 | +.4302 | +.0508 | | 0033 | 0152 | 0212 | 0230 | +.0102 | +.0011 | 0072 | 0137 | 0177 | 0191 | |) ° | 0.2 | +.2047 | 0 | +.0078 | 0017
+.0050 | 0065
+.0078 | 0086
+.0096 | 0092
+.0102 | +.0049 | +.0009 | 0017
+.0248 | 0030
+.0388 | 0036
+.0480 | 0037
+.0512 | | L_ | | R _y | | +.0571 | +.2350 | +.3590 | | + . 4525 | | 1.0054 | 1.0240 | 1.0000 | 1.0400 | 7.0312 | | | | R _x R _y | | +.0482 | | +.3343 | | +.3874 | | | | | | | | *** | 1.0
C.8 | 1465
+.4416 | + .0490 | 0
+ .0086 | 0
0090 | 0163 | 0
0189 | 0196 | 0
+.0096 | 00 6 0 | 0
0197 | 0
0296 | 0
0354 | 0 | | 1 | 0.6 | +.5465 | | +.0142 | 0116 | 0225 | 0265 | ~.0274 | +.0139 | 0054 | 0233 | 0366 | 0447 | 0373
0473 | | "_ | 0.4 | +.4698 | +.0594 | +.0121 | 0097 | 0185 | 0214 | 0221 | +.0119 | 0039 | 0177 | 0277 | 0334 | 0353 | | 8 | 0.2 | +.1759 | | +.0053 | 0029 | 0051 | 0052 | | +.0051 | +.0013 | | 1900.+ | | +.0040 | | l | <u> </u> | 0530
R _v → | 0
0530 | +.0041 | +.0098 | +.0144 | +.0171 | +.0180 | 0 | +.0207 | +.0492 | +.0719 | +.0854 | +.0898 | | | | R _x R _y | | +.1304 | | +.3709 | | +.3969 | | | | | | | | l _ | 1.0 | 1593 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0.8 | +.4456 | +.0465 | +.0014 | 0129
0174 | 0164
0225 | 0166
0227 | | +.0093 | 0125
0137 | 0294
0363 | 0403
0512 | 0461
0592 | 0479 | | 1 | 0.6 | +.5491 | | +.0031 | 0142 | 0176 | 0172 | | +.0112 | 0101 | 0265 | 0367 | 0418 | 0617
0434 | | 1% | 0.2 | +.1622 | | +.0018 | 0033 | 0027 | | 0008 | | | | | +.0095 | +.0104 | | | 0 | 0584 | 0 | +.0067 | +.0139 | +.0187 | | +.0219 | 0 | +.0334 | +.0697 | +.0934 | +.1056 | +.1093 | | <u> </u> | | R _X R _Y | | +.2379 | | +.5707 | | +.6218 | | | | | _ | | | . ~ | 1.0 | 1387 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | m | 0.8 | +.4395 | | 0086 | | | | | | 0238 | | | | 0547 | | 1 11 | 0.6 | +.5302 | +.0531 | 0110
0090 | 0207
0160 | 0191
0139 | | 0162 | +.0106
+.0089 | 0289 | 0533
0376 | 0648
0445 | 0693
0468 | 0704
0474 | | % | 0.2 | +.1588 | +.0184 | 0020 | 0018 | +.0007 | | | +.0037 | | +.0082 | | +.0147 | | | 0, | 0 | 0456 | 0 | +.0115 | +.0192 | +.0225 | | +.0239 | 0 | | | | | +.1194 | | ! | <u></u> | R _y — | 0456 | +.3937 | +.5702 | +.6160 | +.6244 | +.6252 | | | | | | | | Y | | 0 | | | | | | | | | | <u> </u> | | | | 4 | linged | | T | | | | ent = (C
tion = (C | | | | M. | R |)M, | — → X | | mm | mm | ·//// | X | ÷ρ | * | | | | POSITI | VE SIGN | CONVE | NTION | | | FIGURE 10.—Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load I, uniform load. | | I | | I | | | A _x | | | T | | A | A _y | | | |-------------|--|-------------------------------|-----------|-------------|--------------|----------------|-----------------------|--------|-------------|--------|---------|----------------|---------------|--------------| | | У/Ь | x/a → | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | Ť | 100 | T | | | 1 , 0 | R _x R _y | 0005 | 0025 | 0007 | | | + 0020 | | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | ~ | 1.0 | 0005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 0 | 1 0 | | - | 0.8 | +.0076 | +.0005 | +.0003 | | 0001 | | | | | +.0001 | +.0001 | +.0001 | +.0001 | | 111 | 0.6 | +.0967 | +.0039 | +.0017 | | | | | | +.0003 | | | 0004 | | | 1% | 0.4 | +.1186 | +.0048 | +.0023 | +.0001 | | 0023 | | +.0010 | +.0004 | 0000 | 0003 | 0005 | 0006 | | 6 | 0 | +.0504 | 0 | | | <u></u> | +.0006 | | 0 | | +.0016 | +.0025 | +.0031 | +.0033 | | | | Ry | +.0504 | | | | +.1083 | | | | | | | | | | <u> </u> | R _x R _y | 0067
0 | 0196
0 | 0058
0 | | +.0128 | | | T | | T | | | | 74 | 0.8 | +.0259 | | +.0021 | | 0009 | - 0018 | 0 0021 | 0
+.0007 | +.0006 | +.0006 | 0 | +.0007 | +.0007 | | " | 0.6 | +.1889 | | +.0060 | | | | | +.0028 | | 0005 | | 0023 | 0026 | | | 0.4 | +.2496 | | +.0077 | | + | | | +.0037 | +.0013 | 0008 | 0024 | 0034 | 0037 | | 1% | 0.2 | +.1917 | +.0136 | | 0004 | | | 0065 | | +.0006 | 0012 | 0026 | 0034 | 0037 | | 1 | | +.0299
Ry | 0 + 0299 | | | | +.0025 | | <u> </u> | +.0024 | +.0063 | +.0100 | +.0126 | +.0134 | | | | R. Ry | 0266 | 0511 | | | +.0415 | | | | | | | | | _ co | 1.0 | 0266 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/8 | 0.8 | +.0626 | | +.0055 | | | 0051 | | | | +.0010 | | | | | ш | 0.6 | +.2728 | +.0277 | +.0109 | | 0080 | | | +.0055 | | | 0051 | 0068 | | | % | 0.2 | +.2185 | | +.0067 | 0013 | 0058 | | | | | 0025 | 0074 | | 0062 | | | 0 | +.0016 | 0 | | | | +.0051 | | 0 | +.0050 | | +.0206 | | +.0274 | | | | Ry → | | +.0368 | | | +.3167 | | | | | | <u> </u> | | | | | R _X R _y | 0552 | 0738 | 0008 | +.0494 | | +.0875 | | | | | | | | 2~ | 0.8 | +.1009 | +.0184 | 0
+ 0081 | + 0001 | 0
0052 | 0 - 0082 | - 0091 | 0
+.0037 | + 0019 | 0000 | 0
0018 | 0
0030 | 0
0034 | | 1 1 | 0.6 | | +.0390 | | | 0117 | | | | | 0060 | | | 0155 | | . q/p | 0.4 | | +.0425 | | 0038 | | 0173 | 0187 | +.0085 | 0002 | | 0140 | | 0190 | | 0 | 0.2 | | +.0226 | | | | | | +.0045 | | 0030 | | | 0060 | | | 0 | 0198
R _v → | | | | | +.0086 | | 0 | +.0091 | +.0229 | +.0351 | +.0429 | +.0456 | | | | R. R. | 0982 | | | | +.1247 | | | | | | | | | | 1.0 | 0982 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3, | 0.8 | | +.0255 | | 0030 | 0080 | | | +.0051 | | 0049 | | $\overline{}$ | 0135 | | 10 | 0.6 | | +.0472 | | 0079
0089 | 0150 | 0168 | | +.0094 | | | | 0304
0303 | 0322 | | 9/9 | 0.2 | +.1871 | +.0224 | | 0035 | 0049 | 0047 | | | 0005 | | 0022 | | - 0012 | | | 0 | 0393 | 0 | +.0038 | +.0085 | +.0121 | +.0142 | +.0148 | 0 | +.0190 | +.0427 | +.0605 | +.0708 | +.0741 | | \vdash | | Ry → | | | | | +.5029 | | | | | | | | | 1 1 | 1.0 | R _x R _y | 1143
0 | 0 0 0 | +.0802
0 |
+.1215
0 | +.1357
0 | +.1389 | 0 1 | 0 1 | 0 [| 0 | 0 | 0 | | - | 0.8 | | +.0254 | | 0057 | 0083 | 0086 | 0086 | | 0021 | | 0157 | | 0202 | | 0 | 0.6 | +.3855 | | | | 0153 | | | | | 0248 | | | 0419 | | \ 9 | 0.4 | +.4165 | | | 0120 | 0141 | | 0132 | | | | | | 0377 | | 0 | 0.2 | +.1766 | | | | | 0018
+.0170 | | | | +.0585 | | +.0026 | | | | 0 | 0412
Ry → | | | | | +.5347 | | 0 | +.0297 | T.0000 | T.0/62] | +.0850 | +.0876 | | | | R _X R _y | 1143 | +.0484 | +.1189 | +.1322 | +.1322 | +.1314 | | | , . | | | | | % | 1.0 | 1143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 7074 | 0 0 0 | 0 | 00241 | 0 | | "' | 0.8 | | +.0361 | | 0075 | 0071 | 0062 | | +.0042 | 0074 | | 0219 | | 0246
0477 | | "_ | 0.4 | | +.0340 | | 0129 | 0112 | 0097 | | +.0068 | 0199 | | 0384 | | 0405 | | 9/9 | 0.2 | +.1778 | +.0151 | 0028 | 0023 | 0004 | +.0007 | +.0010 | +.0030 | 0011 | + .0018 | +.0046 | +.0061 | +.0065 | | " | 0 | 0262 | | +.0098 | | +.0179 | | +.0189 | 0 | +.0489 | + .0779 | + .0896 | + .0935 | +.0944 | | \Box | | Ry → | 0262 | +.3699 | +.5053 [| +.5372 | +.5425 | +.5429 | | | | | | | | Ţ | | | | | | | | | | | | Y | | | | F | inged | | T | | | | ent = (C
tion = (C | | | | M: | R _x |)
M, | × | | mm | nam | 11177 | ^ - | ⊷p⊹ | 1 | | | | POSITIV | E SIGN | CONVEN | ITION | | | Figure 11. --Plate fixed along three edges---Hinged along one edge, moment and reaction coefficients, Load II, 2/3 uniform load. | | | | | | N | × | | | | | N | 1 _y | | | |----------|--------------------------|-------------------------------|-----------|---------------|--------------|------------------|--------------|--------------|---------|--------------|--------------|----------------|-----------------|--------------| | | y/b | ½ / ₀ → | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1.0 | R _x R _y | 0000
0 | ~ .0000
0 | 0000
0 | 0000
0 | 0000
0 | 0000
0 | 0 | 1 0 | 0 | 0 | 0 | Ö | | >8 | 0.8 | 0001 | +.0000 | | | 0000 | 0000 | | | | +.0000 | | | +.0000 | | l n | 0.6 | +.0000 | | +.0001 | | 0000 | 0000 | 0000 | | +.0000 | | +.0000 | | + .0000 | | 9/0 | 0.4 | +.0286 | +.0013 | +.0006 | +.0000 | - 0003
- 0012 | 0006
0019 | 0007
0022 | +.0003 | +.0001 | +.0001 | | 0000
0007 | 0001 | | 0, | 0 | +.0507 | 0 | +.0001 | +.0003 | +.0005 | | | 0 | +.0006 | +.0016 | | +.0031 | +.0033 | | | | Ry — | +.0507 | +.0124 | | +.0892 | | | | | | | | | | 1 | 1.0 | Rx Ry
0002 | 0002
0 | 0012
0 | 000B | 0003
0 | +.0001 | 1.0002 | 0 | T 0 | 0 | 0 | 0 | T 0 | | 74 | 0.8 | 0008 | +.0001 | +.0001 | +.0001 | 0000 | 0001 | 0001 | +.0000 | +.0001 | +.0001 | +.0001 | +.0002 | +.0002 | |] 11 | 0.6 | +.0040 | +.0011 | | +.0002 | 0003 | 0006 | 0007 | +.0002 | | +.0003 | | | +.0005 | | 9% | 0.4 | +.0652 | +.0055 | | | 0015 | 0025
0044 | | +.0011 | +.0005 | +.0000 | 0004 | 0006 | 0007
0043 | | 0 | 0.2 | +.0354 | 0 | +.0004 | | | +.0021 | | 0 | +.0022 | +.0057 | | | | | | | Ry — | +.0354 | +.0344 | | +.1704 | | | | | | | | | | | 1.0 | R _x Ry
0027 | 0027
0 | 0071 | 0032
0 | +.0005
0 | + .0030 | +.0039 | 0 | 0 | 1 0 | 0 | 0 | 0 | | 3/8 | 0.8 | +.0019 | +.0011 | +.0007 | +.0002 | 0002 | | | +.0002 | | | | | +.0005 | | i ii | 0.6 | +.0169 | | +.0021 | | 0010 | | | | +.0007 | | | +.0005 | + .0005 | | 9% | 0.4 | +.0953 | +.0100 | +.0038 | | 0029 | 0043 | | +.0020 | | 0008
0037 | 0019
0058 | 0026
0070 | 0029 | | 0 | 0 | +.0186 | 0 | + .0008 | | +.0028 | | +.0036 | 0 | +.0040 | +.0095 | +.0141 | +.0170 | | | | | Ry — | +.0186 | +.0642 | | +.2221 | | | | | | | | | | | 1.0 | Rx Ry0077 | 0077
0 | 01 3 6 | 0037
0 | +.0043 | +.0093 | +.0110
0 | 0 | 0 | 0 | 0 | 0 | 0 | | ~ | 0.8 | +.0082 | +.0026 | +.0015 | +.0003 | 0007 | 0012 | | +.0005 | + .0005 | | +.0004 | +.0003 | + .0003 | | 1 11 | 0.6 | +.0302 | +.0065 | | +.0002 | 0018 | 0029 | | +.0013 | +.0008 | +.0003 | 0002 | 0006 | 0007 | | 9/0 | 0.4 | +.1092 | +.0124 | +.0038 | 0012
0027 | 0038
0040 | | 0053
0043 | +.0025 | +.0001 | 0022
0052 | 0040
0072 | 0051
0081 | 0055
0084 | | 0 | 0.2 | +.0094 | 0 | +.0013 | | +.0040 | | | 0 | +.0066 | | + .0202 | + .0236 | +.0246 | | | | Ry — | +.0094 | | +.2066 | +.2593 | +.2835 | | | | | | | | | 1 | 1.0 | R _X Ry
0163 | 0163
0 | 01 <u>52</u> | +.0023 | +.0130 | +.0185 | 0201 | 0 | 0 | 0 | ō | 0 | 0 | | 3,4 | 0.8 | +.0159 | +.0042 | | 0002 | 0013 | 0017 | | | +.0004 | 0001 | 0008 | 0012 | 0014 | | " | 0.6 | +.0416 | +.0088 | +.0027 | 0010 | 0027 | 0033 | 0035 | | | 0012 | 0027 | 0037 | 0040 | | ام. ا | 0.4 | +.1141 | +.0132 | +.0018 | 0027
0032 | 0041
0032 | 0044 | | +.0026 | 0014
0038 | 0049
0067 | 0073
0076 | 0086
0078 | 0091 | | % | 0.2 | +.0052 | 0 | +.0024 | | | | | 0 | +.0012 | +.0222 | +.0284 | + .0314 | + .0323 | | | | Ry → | +.0052 | +.1676 | +.2599 | +.2954 | +.3085 | +.3118 | | | | · | | | | | 1.0 | R _X Ry | 0199
0 | 0088
0 | +.0095 | + .0177 | +.0206 | +.0213 | 0 | 0 | 0 | 0 | 0 | 0 | | - | 0.8 | +.0176 | +.0044 | +.0010 | 0008 | 0014 | 0015 | 0015 | + .0009 | | 0009 | 0018 | 0025 | 0027 | | - 11 | 0.6 | +.0425 | + .0088 | | 0019 | 0027 | 0027 | | +.0018 | 0003 | 0027 | 0046 | 0057 | 0060 | | ۰
م | 0.4 | +.1110 | +.0120 | 0003 | | 0038
0024 | 0035
0020 | 0034
0019 | +.0024 | 0030
0051 | 0070
0072 | 0092
0073 | 0102
0070 | 0105
0068 | | 0 | 0.2 | +.1749 | +.0092 | + .0033 | + .0055 | +.0065 | | | 0 | +.0167 | + .0274 | + .0326 | + .0348 | + .0354 | | | | Ry → | +.0099 | + 2129 | +.2870 | +.3085 | + .3147 | +.3160 | | | | | | | | | 1.0 | R _X Ry | 0211
0 | + .0038 | +.0172 | +.0198 | + .0197 | + 0195 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/2 | 0.8 | | | · | 0012 | | | | | 0006 | | | | | |] ",] | 0.6 | +.0385 | +.0073 | 0010 | 0024 | 0022 | 0019 | 0017 | +.0015 | 0019 | 0049 | 0065 | 0071 | 0072 | | | 0.4 | +.1044 | +.0091 | 0026
0029 | | 0030
0016 | 0026
0014 | 0025
0013 | +.0018 | 0056
0065 | 0093
0070 | 0106
0065 | ~ .0110
0062 | 0061 | | 9/0 | 0.2 | +.0253 | 0 | +.0047 | | | +.0073 | | 0 | +.0237 | | | + .0367 | | | | | Ry | +.0253 | | | | | | | | · | | | | | Y | F) | | | | | | | | | | | | | | | mm | POSITIVE SIGN CONVENTION | | | | | | | | | | | | NTION | | Figure 12. --Plate fixed along three edges---Hinged along one edge, moment and reaction coefficients, Load III, 1/3 uniform load. | <u> </u> | 1 | | <u> </u> | | N | 1 _x | | | | | N | A _y | · | | |----------|--|-------------------------------|-----------|--------------|----------------|----------------|------------------------|--------|----------------|--------------|----------------|----------------|----------------|----------------| | | y/b | X/0→ | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | l _ | 1.0 | 0003 | 0003
0 | +.0024 | +.0064 | +.0092 | +.0109 | +.0114 | - | 0 | 0 | 0 | 0 | | | ~ | 0.8 | +.0250 | | | +.0000 | 0003 | | 0005 | | +.0001 | +.0000 | 0001 | 0001 | 0001 | | 11 | 0.6 | +.0500 | | | +.0001 | 0006 | | | | +.0002 | | | 0002 | 0002 | | مي ا | 0.4 | +.0752 | | | +,0001 | 0008 | | 0016 | | | +.0000 | | 0003 | | | 1% | 0.2 | +.0941 | 0 0 | | +.0000 | 0010 | | 0019 | 8000.+1 | +.0003 | +.0014 | | +.0005 | 0006
+.0030 | |] | ۳ | Ry - | +.0459 | | +.0546 | | +.1003 | +.1058 | ╁ ╵ | 14.0003 | 17.0014 | 1+.0023 | 17.0028 | 7.0030 | | | | R _X R _y | 0061 | 0102 | +.0056 | +.0169 | +.0237 | +.0260 | | | | | | | | 74 | 1.0 | 0061 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0.8 | | | | +.0001 | | | 0021 | | +.0004 | | 0002 | 0004 | 0005 | | 1 "_ | 0.4 | | | | +.0000 | | 0051 | | | +.0009 | | | 0019 | 0021 | | 8 | 0.2 | | +.0102 | | | | 0043 | | | +.0004 | | 0022 | 0029 | | | " | 0 | +.0304 | 0 | | +.0010 | | | | 0 | +.0020 | +.0052 | +.0081 | +.0100 | +.0107 | | L | | Ry — | +.0304 | | +.1052 | | | | L | | | | | | | İ | 1.0 | R _x R _y | 0205
0 | 0283
0 | +.0070 | +.0313 | +.0455 | +.0502 | 0 | 1 0 | 0 | 0 | 0 | - | | 3/8 | 0.8 | | +.0091 | +.0039 | | 0026 | 0041 | 0046 | | +.0007 | 0003 | 0010 | 0015 | 0016 | | 1 | 0.6 | | +.0170 | | | 0048 | | | | +.0011 | | | 0035 | 0038 | | " | 0.4 | +.2120 | +.0207 | +.0078 | 0008 | 0061 | 0089 | 0098 | +.0041 | +.0009 | 0021 | 0044 | 0058 | 0063 | | % | 0.2 | | +.0145 | +.0045 | | | 0057 | 0061 | | +.0001 | 0023 | | 0049 | 0052 | | 1 1 | <u> </u> | +.0102
R _v → | +.0102 | | +.0020 | | | +.0040 | - | +.0039 | +.0099 | +.0153 | 8810.+ | +.0200 | | - | | R _X R _y | 0396 | | +.0153 | | | +.0767 | | | | | | | | 1 | 1,0 | 0396 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | | 1/2 | 0.8 | +.1042 | | | 0005 | | 0060 | | +.0028 | +.0006 | 0014 | 0030 | 0040 | 0044 | | 1 11 | 0.6 | | | | 0013 | | 0104 | | +.0049 | | 0031 | 0062 | 0082 | 0089 | | ا
% | 0.4 | _ | | | 0023 | | | | +.0054 | | 0048 | | 0108 | | | 0 | 0.2 | +.1632
0040 | 0 | | 0019
+.0033 | | | | +.0032 | +.0068 | 0029
+.0167 | 0043
+.0250 | 0050
+.0302 | | | | | .0040
R _V → | | | +.1959 | | | | ├ ॅ | 11.0000 | 1.0101 | 1.0230 | 1.0302 | 1.0020 | | | | R _X R _X | 0671 | | +.0454 | | | +.1061 | | | | | | | | | 1,0 | 0671 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/4 | 0.8 | | +.0181 | | 0026 | 0058 | 0071 | | +.0036 | 000 8 | 0051 | 0085 | 0106 | 0113 | | 1 11 | 0.6 | | +.0301 | | 0048
0055 | 0097 | 0115 | | +.0060 | 0030 | 0094 | 0150
0158 | 0185
0188 | 0196
0198 | | %
% | 0.2 | +.1479 | +.0155 | +.0017 | | 0035 | 0033 | | +.0031 | 0011 | 0027 | 0027 | 0023 | 0021 | | 9 | 0 | 0155 | 0 | | +.0060 | | | +.0101 | 0 | +.0138 | +.0299 | +.0417 | +.0484 | +.0505 | | | | Ry —► | | | +.2734 | | | | | | | | | | | | | R _x R _y | | | +.0716 | | | +.1102 | 0 | 0 | 0 | 0 | 0 | | | - | 0.8 | 0764
+.1300 | + 0177 | 0
+.0016 | 0
0043 | 0
0060 | 0062 | | +.0035 | 0028 | 0086 | 0127 | | 0158 | | 11 | 0.6 | | +.0289 | | | | 0098 | | +.0058 | 0054 | 0149 | 0213 | 0248 | 0259 | | | 0.4 | | | |
0076 | 0089 | 0086 | 0084 | +.0056 | 0064 | 0152 | 0203 | 0228 | 0235 | | q/p | 0.2 | +.1417 | +.0137 | 0003 | | 0022 | 0015 | | | 0016 | 0019 | | +.0003 | | | | | 0149 | 0 | +.0042 | +.0081 | +.0104 | +.0115 | | <u> </u> | +.0211 | +.0403 | +.0519 | +.0576 | +.0593 | | - | <u> </u> | R _X R _y | 0743 | | +.0971 | | +.1058 | | | | | | | | | _~ | 1.0 | 0743 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/2 | 0.8 | +.1257 | +.0145 | 0025 | 0055 | 0052 | 0046 | 0044 | +.0029 | 0067 | 0134 | 0169 | 0183 | 0187 | | " | 0.6 | | +.0232 | 0046 | | | 0072 | 0069 | | 0118 | 0223 | 0273 | 0292 | 0297 | | | 0.4 | +.2503 | +.0101 | 0052
0022 | 0082
0018 | 0071 | 0061
2000.+ | + 0004 | +.0044 | 0123 | 0207 | 0240
+.0017 | +.0026 | 0253
+.0029 | | 9/p | 0.2 | 0018 | 0 | | +.0106 | | | | 0 | +.0339 | | +.0606 | + 0631 | +.0637 | | | | Ry | 0018 | | +.3754 | +.3960 | +.3994 | +.3997 | | | | | | | | Y | inged | | T | | | | | | | | M _x | | 10 | | | H | min | | x | i e p | | | nent = {(
tion = {(| | | | W | Rx Ry O N | My CONVE | ——→ X | Figure 13.--Plate fixed along three edges---Hinged along one edge, moment and reaction coefficients, Load~IV, uniformly varying load. | | 1 | | • | · · - | | | | | | <u> </u> | | | | | | |-------------|--|---------------------------------------|-------------------------------|----------------|----------------|-----------------|--------------|----------------|----------------|--|----------------|---------------------------------------|------------------------------|-----------------|--------------| | | L., | , | _ | | | | × | | | | | · · · · · · · · · · · · · · · · · · · | ly . | | | | <u> </u> | y/t | | %→ | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | _ | 1.0 | | 0000 | 0000
0 | 0003
0 | 0001 | +.0000 | +.0001 | +.0001 | 0 | 0 | 0 | 0 | Γ ο | 0 | | >∞ | 0.8 | 3 | +.0003 | +.0000 | +.0000 | +.0000 | 0000 | 0000 | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | 1 0 | 0.6 | _ | 1.0145 | | | +.0000 | | | 0003 | | | | | 0000 | | | 8 | 0.4 | _ | F.0502
F.0819 | | | +.0001 | | | | | +.0002 | | | 0002
0004 | 0002 | | " | 0 | 1 | +.0437 | 0 | +.0001 | +.0003 | +.0004 | +.0005 | +.0006 | 0 | | +.0014 | | | +.0028 | | <u></u> | \vdash | _ | Ry Ry | +.0437 | +.0148 | | +.0807 | | +.1014 | ļ | | | | | | | 1 _ | 1.0 | _ | 0011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō | | 74 | 0.8 | _ | | | | +.0001 | 0001 | | | | +.0001 | | | +.0003 | +.0003 | | 1 0 | 0.6 | | +.0323
+.1011 | | +.0015 | +.0002 | 0008
0021 | | | | | | | 0000
0014 | - | | % | 0.8 | _ | | | | 0005 | 0025 | | | | | | | 0027 | | | " | 0 | | 0308 | 0 | | +.0009 | | | +.0019 | 0 | +.0019 | +.0047 | +.0071 | +.0088 | +.0093 | | <u> </u> | ┼ | _ | Ry →
Ry Ry | +.0308 | +.0345
0134 | +.1011
0042 | | | | | | | | | | | ١ ـ | 1.0 | _ | 0060 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \%
8 | 0.8 | _ | | | | +.0003 | | | 0014 | | | | | +.0005 | | | " | 0.6 | _ | +.0558
+.1389 | | | + .0002
0006 | 0020 | | 0037 | | | | 0004 | | 0009
0044 | | 8 | 0.2 | | 1.1458 | | +.0031 | 0012 | 0034 | 0043 | 0046 | | 0002 | 0023 | 0038 | | 0050 | | 1 | 0 | _ | 1.0155 | 0 | | +.0016 | | | | 0 | +.0033 | +.0081 | +.0122 | +.0149 | +.0158 | | | ┼ | | Ry →
Ry | +.0155
0143 | +.0549
0221 | +.1390 | | +.2183 | +.2269 | | | | | | | | . ~ | 1.0 | | 0143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ~~ | 0.1 | | | | | +.0002 | 0013 | | | | +.0007 | | | 0001 | 0002 | | "_ | 0.6 | | | +.0163 | | 0003
0016 | | | 0033 | | | | 0020 | 0028
0073 | 0078 | | 8 | 0.2 | 2 1 | 1415 | +.0119 | +.0022 | 0019 | 0034 | 0039 | 0040 | +.0024 | 0008 | 0032 | 0046 | 0054 | | | \ | <u> </u> | | F.0064 | 0 | +.0011 | +.0026 | | | | 0 | +.0056 | +.0129 | +.0187 | +.0222 | +.0234 | | - | + | | R _V R _V | 0276 | 0216 | +.1762 | | | | | | | | | | | | 1.0 |) [- | 0276 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ₹
** | 0.8 | | | +.0072 | | 0006
0020 | 0022 | | | | +.0004
0003 | | 0020
0060 | 0028
0077 | 0031 | | l u | 0.4 | _ | | +.0176 | | | 0056 | | | | 0022 | 0070 | 0102 | 0119 | 0125 | | 8 | 0.2 | \rightarrow | 1319 | | +.0003 | | 0027 | | | +.0022 | 0020 | | 0044 | 0043 | | | - | -0 | | R _v | +.0010 | | +.0043 | | | | 0 | +.0106 | +.0214 | +.0285 | +.0323 | +.0335 | | † | | | R _y | 0329 | | | +.0321 | | + 0376 | | | | | | | | \ _ | 1.0 | | .0329 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0.6 | | .0341 | +.0073 | +.0013 | 0015
0033 | | 0025
0045 | 0025 | +.0015 | 0001
0018 | 0021
0060 | 0038
0091 | 0048
0107 | 0051
0113 | | 1 | 0.4 | | 1623 | | 0002 | | | 0049 | 0048 | +.0032 | 0044 | 0097 | 0127 | 0141 | 0145 | | 8 | 0.2 | | | f .0093 | 0011 | 0024 | | 0014 | | +.0019 | 0028 | | 0035 | 0031
0371 | 0029 | | 1 | - | _ | .0040
R _y → | +.0040 | +.0031 | +.0055 | | | | 0 | +.0155 | +.0275 | T.U341 | +.0371 | 7.0380 | | | | Ŕ | R _y | 0339 | +.0100 | +.0313 | +.0354 | +.0354 | +.0351 | | | | | | | | 3% | 1.0 | | 0339 | 0
+.0063 | 0006 | 0
0021 | 0 0020 | 0017 | 0016 | +.0013 | 0 - 0015 | 0
0042 | 0
0057 | 0
0063 | 0
0065 | | | 0.8 | | 0878 | +.0063 | 0019 | 0021 | 0020 | 0032 | 0016 | +.0022 | 0013 | 0095 | 0037 | 0129 | 0131 | | " | 0.4 | 1 | ⊦.1577 | +.0123 | 0034 | 0048 | 0041 | 0036 | 0034 | +.0025 | 0080 | 0129 | 0147 | 0153 | 0154 | | % | 0.2 | _ | F.0169 | + .0065 | 0021
+.0047 | 0017
+.0069 | + 0077 | 0006
+.0080 | 0005
+.0080 | +.0013 | 0035
+.0235 | 0032
+.0346 | + 0386 | +.0019 | +.0402 | | | - | | ₹ _y → | +.0169 | +.2361 | +.2888 | | +.3007 | +.3008 | <u> </u> | | | | | .0702 | | | Hinged Moment = (Coefficient)(pb ²) Reaction = (Coefficient)(pb) | | | | | | | | | | | | - x | | | | 1 | <i></i> | × × × × × × × × × × × × × × × × × × × | | | | | | | | | | | نہ
VE 31 61 | / My
I CONVE | NTION | Figure 14.—Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load V, 2/3 uniformly varying load. RESULTS 21 | | | - | | | N | 1 _x | - | | | | N | /l _y | <u>-</u> | | |-----------------|--|-------------------------------|-------------|--------|--------------|----------------|------------------|-----------------------|----------|----------------|--------------|--------------------|----------|----------------| | | У/ _b | x /₀ → | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | R _x R _y | | | | 0000 | | | | | <u> </u> | | | | | % | 0.8 | +.0000
0000 | 0
0000 | + 0000 | +.0000 | +.0000 | 0000 | 0000 | 0 | +.0000 | 0 | 0 | 0 | 0 | | 11 | 0.6 | 0001 | | +.0000 | | 0000 | 0000 | | +.0000 | | | +.0000 | | | | مي ا | 0.4 | +.0040 | | +.0001 | | 0001 | + | 0001 | +.0000 | +.0000 | | +.0000 | | | | 8 | 0.2 | +.0459 | +.0017 | | +.0000 | 0005 | | | | +.0001 | 0001 | | | 0002 | | | ا | Ry - | +.0369 | | +.0505 | | | | | +.0005 | 1+.0012 | +.0018 | +.0022 | +.0023 | | | | R _x R _y | 0000 | 0003 | 0002 | 0001 | | +.0000 | | | | | | | | 74 | 0.8 | 0000
0003 | +.0000 | + 0000 | +.0000 | 0000 | 0000 | - 0000 | 0 | +.0000 | 0 | 0 | 0 | 0 | | - | 0.6 | +.0004 | | | +.0001 | 0001 | | | | +.0000 | | +.0000 | +.0000 | | | | 0.4 | | | +.0007 | | 0004 | 0006 | 0007 | +.0003 | +.0002 | +.0001 | +.0001 | +.0000 | +.0000 | | % | 0.2 | +.0693 | +.0040 | | +.0003 | 0012 | | | | +.0001 | | 0012 | | | | 1 | <u> </u> | R _v | +.0297 | | +.0869 | | | | 0 | +.0014 | 1+.0032 | +.0046 | +.0055 | +.0058 | | | | R _x R _y | 0007 | 0019 | 0009 | +.0000 | +.0007 | | | | | | | | | 3% | 0.8 | 0007 | 0 | +.0002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0.6 | +.0002 | +.0010 | +.0002 | +.0001 | 0001 | 0001 | - 0006 | + 0002 | +.0001 | +.0001 | +.0001 | +.0002 | +.0002 | | " | 0.4 | +.0216 | | +.0012 | 0000 | 0009 | | | | +.0003 | 0000 | | | 0005 | | % | 0.2 | | | +.0010 | | 0016 | 0018 | | +.0010 | | 0014 | | | 0029 | | 1 | <u> </u> | +.0228
R _y → | 0
+.0228 | | +.0009 | | +.0015 | | <u> </u> | +.0020 | +.0044 | +.0063 | +.0075 | +.0078 | | | | R _x R _y | 0020 | | 0012 | | +.0023 | +.0028 | | | | | | | | 2/2 | 1.0 | 0020 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0.8 | | | | +.0001 | 0002
0005 | 0003
0008 | 0004 | + 0004 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001
0001 | | ۾ ا | 0.4 | | | | 0003 | | 0014 | 0015 | +.0007 | +.0002 | 0004 | 0009 | 0012 | 0013 | | 8 | 0.2 | | | | 0013 | | | | +.0010 | | | | | 0033 | | 1 | <u> </u> | +.0203
R _y > | +.0203 | | +.0013 | | | | 0 | +.0031 | +.0063 | +.0085 | +.0097 | +.0101 | | _ | | R _x R _y | 0044 | | +.0004 | | | | | | | | | | | 3,4 | 1.0 | 0044 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | į į | 0.8 | | | | 0000
0002 | | 0005
0009 | 0005 | +.0002 | +.0001 | 0000
0002 | | | 0003
0010 | | " | 0.4 | | | | | 0012 | 0012 | | | 0002 | 0011 | | | 0023 | | 9% | 0.2 | | +.0041 | 0005 | | 0012 | 0010 | | +.0008 | 0015 | | | | 0032 | | | <u> </u> | +.0216
R _v → | +.0216 | +.0010 | +.0018 | | +.0024 | | 0 | +.0052 | +.0091 | +.0111 | +.0121 | +.0124 | | | | R _x R _y | 0054 | | +.0024 | | | +.0056 | | | - | | | | | l | 1.0 | 0054 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 11 | 0.8 | +.0045 | | +.0003 | | | 0004
0007 | 0004
00 0 7 | +.0002 | +.0001
0000 | | 0005 -
0011 - | | 0007
0016 | | اما | 0.4 | | +.0035 | 0000 | | 0010 | 0010 | - 0000. | | 0006 | | | | 0027 | | ٩/ _p | 0.2 | | +.0033 | 0009 | | | | | | 0021 | | 0030 | | | | 1 | 0 | +.0261
R _v → | 0 + 0261 | +.0014 | +.0022 | | +.0026
+.1619 | | 0 | +.0070 | +.0108] | +.0124 | +.0131] | +.0133 | | | | | | | +.0045 | | | +.0051 | | | | | | | | ~2 | 1.0 | 0058 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | , w | 0.8 | +.0044 | | 0000 | | | 0003
0005 | | | | | 0008 -
0017 - | | | | " | 0.4 | +.0232 | +.0027 | 0007 | 0010 | 0008 | 0007 | 0006 | +.0005 | 0014 | 0024 | 0028 | 0029 | 0029 | | 9/p | 0.2 | | +.0021 | 0011 | | | | 0006 | | | | 0028 | | 0027 | | } | 0 | +.0360
R, → | +.0360 | | +.0025 | | | | 0 | +.0095 | +.0125 | +.0135 | r.UI36] | +.0136 | | | | <u> </u> | .5000 | | | | | | | | | | | | | H | Hinged Moment = (Coefficient)(pb ²) Reaction = (Coefficient)(pb) | | | | | | | | | | | | | — → X | | <i></i> | POSITIVE SIGN CONVENTIC | | | | | | | | | | | | NTION | | $\begin{tabular}{ll} \textbf{Figure 15.--Plate fixed along three edges---Hinged along one edge, moment and reaction coefficients, Load VI, 1/3 uniformly varying load. \end{tabular}$ | | | | | | N | 1 _x | | | <u> </u> | · · · · · · | ٨ | n _y | | | |--|--|-------------------------------|--------------|----------------|----------------|----------------|------------------------|----------------|-------------|----------------|----------------|----------------|-----------------|----------------| | 1 | y/b | ¾ _a → | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | R _x R _y | 0000 | | | 0000 | | 0000 | | <u> </u> | <u> </u> | | L 0.0 | | | <u>~</u> | 1.0 | 0000 | 0000 | 0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | l ii | 0.8 | 0000 | | | +.0000 | | +.0000 | | | 0000
+.0000 | + 0000 | +.0000 | +.0000 | +.0000 | | | 0.4 | 0000 | | | +.0000 | | | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | 1% | 0.2 | +.0119 | +.0004 | | +.0000 | | | 0002 | +.0001 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | | 0 | Ry → | +.0237 | | +.0002 | | | | 0 | +.0003 | +.0008 | +.0012 | +.0014 | +.0014 | | | 1 | R _x R _y | 0000 | 0000 | | 0000 | | 0000 | | | | | | | | 74 | 0.8 | 0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0.6 | 0001 | | | +.0000 | | | - 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | " | 0.4 | +.0010 | | | +.0000 | | 0001 | 0001 | +.0000 | 0000.+ | +.0000 | +.0000 | +.0000 | +.0000 | | 1% | 0.2 | +.0176 | | | 0001 | | 0003 | 0004 | +.0002 | +.0001 | 0001 | 0002 | 0002 | 0002 | | | -0 | +.0214
R _v → | +.0214 | | +.0003 | | | | 0 | 1+.0008 | +.0016 | +.0021 | +.0024 | +.0025 | | | - | R _x R _y | 0001 | 0003 | | 0000 | | | | | | | | | | | 1.0 | 1000. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ö | 0 | 0 | 0 | | 3% | 0.8 | +.0004 | +.0000 | +.0000 | +.0000 | 0000 | 0000 | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | " | 0.4 | +.0028 | +.0005 | +.0002 | +.0000 | 0001 | 0002 | 0002 | +.0000 | +.0001 | +.0001 | +.0000 | - 0000 | - 0000 | | 1 % | 0.2 | +.0219 | | | | 0004 | 0004 | 0004 | +.0003 | +.0000 | 0002 | 0004 | 0005 | 0006 | | 1 | - | +.0196 | 0 | | +.0003 | | | | 0 | +.0008 | +.0016 | +.0022 | +.0026 | +.0027 | | <u> </u> | + | R _x R _y | +.0196 | 0007 | +.0685 | +.0001 | | | | | | | | | | .~ | 1.0 | 0003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | | 1/2 | 0.8 | | +.0001 | +.0001 | +.0000 | 0000 | 0001 | 0001 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | ti - | 0.6 | +.0010 | +.0003 | +.0002 | 0000 | - 0001 | 0001 | 0002 | +.0001 | +.0001 | +.0000
0000 | | +.0000 | | | 1% | 0.2 | +.0214 | +.0012 | | 0003 | | | | | 0001 | 0004 | | | 0002
0007 | | 1 " | 0 | +.0202 | 0 | | +.0004 | +.0006 | +.0006 | +.0006 | 0 | | +.0022 | | | +.0032 | | <u> </u> | <u> </u> | $R_{x} \rightarrow R_{y}$ | | | +.0740 | | | | | | | | | | | | 1.0 | 0008 | 000 8 | 0 | +.0000.
0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 1 | - | | 1 % | 0.8 | | +.0002 | | 0000 | 0001 | 0001 | | | +.0000 | | 0000 | | 0000 | | 1 | 0.6 | | +.0004 | | | 0001 | | | | +.0000 | - | 0001 | 0001 | 0001 | | 1 % | 0.4 | +.0039 | +.0007 | | 0001
0003 | 0002
0003 | | | | | 0001
0006 | 0003
0007 | 0003
0007 | 0004
0007 | | 0 | 0 | +.0233 | 0 | | +.0006 | | | | 0 | | +.0029 | | +.0036 | | | | | R _y | | | +.0791 | | | | | | | | | | | | 1.0 | R _x R _y | 0009
0 | 0005
0 | +.0003
0 | +.0007 | +.0009 | +.0009 | 0 | 0 | 0 | 0 1 | 0 1 | - | | - | 0.8 | | +.0002 | | | 0001 | - | - | | +.0000 | | | 0001 | | | 11 | 0.6 | | +.0004 | | | 0001 | | | | +.0000 | | 0002 | 0002 | 0002 | | 1% | 0.4 | +.0037 | +.0007 | | | 0002 | | | | 0000 | | 0004 | | 0004 | | 6 | 0.2 | +.0270 | 0 | | +.0007 | | | | 0 | +.0004 | 0006
+.0033 | 0007
+.0036 | | 0007
+.0038 | | | | R _y → | | +.0742 | +.0811 | +.0824 | +.0826 | +.0827 | | | 1 | | | | | | <u> </u> | R _x R _y | | | +.0007 | | +.0008 | +.0008
0 | • | | 0 1 | | | | | % | 0.8 | 0010
+.0007 | +.0002 | 0
0000 | 0
0001 | 0001 | | | +.0000 | 0
0000 | 0
0001 | 0001 | 000 I | 000 I | |] " | 0.6 | +.0016 | +.0004 | 0000 | 0001 | | 0001 | 0001 | +.0001 | | 0002 | 0003 | 0003 | 0003 | | | 0.4 | | +.0005 | 0001 | 0002 | 0001 | 0001 | 0001 | +.0001 | 0002 | 0004 | 0004 | 0005 | 0005 | | 9/0 | 0.2 | +.0232 | +.0005 | 0003
+.0006 | 0002
+.0007 | +.0008 | | 0001
+.0008 | +.0001 | +.0006 | 0007
+.0036 | 0006
+.0038 | +.0039 | + 0039 | | L | Ľ | Ry | | | | | +.0826 | | | | | | .0000] | .000 | | Y | | | | | | | | | | | | Y | *** | | | * | linged | | | ¥ | _ | | nent = ((
tion = ((| | | | M _x | R _x | /M _y | → X | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ////////////////////////////////////// | | ^ | , _, T |
← p | | | | | | POSITI | VE SIGN | CONVE | NTION | Figure 16.—Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load VII, 1/6 uniformly varying load. RESULTS 23 | | | | | | N | 1 _x | | | | | ٨ | Иy | | | |---------|-----|-------------------------------|----------------|-------------|---------|----------------|---------|---------|---------|--------------|----------|----------|----------|----------| | | y/b | % ₀ → | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | R _X R _y | | | +4.9866 | | | | | * | • | | · | | | ׺ | 1.0 | +.6697 | +.2000 | +.2000 | +.2000 | +.2000 | +.2000 | +.2000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | | 11 | 0.8 | -3.0788
0357 | 1142 | 0481 | 0003 | +.0322 | +.0509 | +.0571 | 0228 | 0080 | +.0046 | +.0142 | +.0201 | +.0221 | | | 0.6 | +.0069 | | | | | | | | 0017
0001 | | | | | | 8 | 0.2 | +.0007 | +.0000 | +.0000 | 0000 | 0000 | 0000 | 0000 | +.0000 | +.0000 | 0000 | 0000 | 0000 | - 0000 | | " | 0 | +.0001 | 0 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | | | +.0000 | | | | | | Ry | +.0001 | | 0003 | | | | | | | • | | | | İ | | R _x R _y | | | +4.6774 | | | | | | | | | | | ₹ | 0.8 | +1.5770
-5.4606 | +.2000 | +.2000 | +.2000 | +.2000 | +.2000 | +.2000 | | +1.0000 | | | | | | | 0.6 | 4874 | | | 0097 | | | | | 0052
0144 | | | | | | H | 0.4 | +.0172 | | | 0039 | | | | | 0036 | | | | 0103 | | 8 | 0.2 | +.0192 | | | 0009 | | | | | 0006 | | | | | | ١ | 0 | +.0045 | 0 | | +.0000 | | | | 0 | | | +.0001 | | | | | | | +.0045 | | | | | | | | | | | | | | | | +2.4931 | | | | | | | | | | | | | 3/8 | 1.0 | | +.2000 | +.2000 | +.2000 | +.2000 | +.2000 | +.2000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | | | 0.8 | -6.6847
-1.2696 | | | 0084 | | | | | +.0241 | | +.2060 | | | | u. | 0.4 | 1792 | | | 0119 | | | | | | | 0210 | | | | و/p | 0.2 | | 0126 | | 0057 | | | | | 0054 | | 0144 | | | | 6 | 0 | +.0436 | 0 | | 0012 | | | | 0 | | | 0130 | | 0210 | | | | Ry | | | +.0472 | | | | | | | | | | | | | | +3.2446 | | | | | | | | | | | | | 1/2 | 1.0 | | | | | | | | | +1.0000 | | | | | | | 0.8 | | 5260
3238 | | | | | | | +.0687 | | | | | | 11 | 0.6 | | | | 0128 | | | | | 0243 | | | | | | a/p | 0.2 | | | | 0113 | | | | | 0143 | | | | | | " | 0 | +.1191 | 0 | | 0061 | | | 0187 | 0 | | | 0611 | | 0937 | | | | Ry → | | | +.0313 | | | | | | | | | | | | | | +4.1774 | | | | | | | | | | | | | 3/4 | 1.0 | | | | +.2000 | | | | | +1.0000 | | | | | | | 0.8 | -2.3733 | | | +.0607 | | | | | +.0025 | | | | | | " | 0.4 | 7580 | | | +.0102 | | | | | 0269 | | | | | | ₀⁄₀ | 0.2 | +.2313 | | | 0124 | | | | | 0344 | | | | | | 0 | 0 | +.2415 | 0 | | 0230 | | | | 0 | 0292 | 1151 | 2041 | 2651 | 2863 | | | | Ry | | | 2583 | | | | | | | | | | | | | | +4.5863 | | | | | | 41.0000 | +10000 | +1.00001 | +1 00001 | +1 00001 | +1 0000 | | _ | 0.8 | | +.2000
4636 | | | | | | | +1.0000 | | | | | | - | 0.8 | | 4636
4029 | | | | | | | +.2639 | | | | | | | 0.4 | 7966 | | | | | | | | 0178 | | | | | | ۹%
ا | 0.2 | +.2918 | | | 0086 | | | | | 0504 | | | | | | | 0 | +.3067 | 0 | 0131 | 0404 | 0631 | 0762 | 0804 | 0 | 0657 | 2021 | 3153 | 3811 | 4019 | | | | | +.3067 | | | | | | | | | | | | | | | R _X R _y | +4.8170 | +2.5171 | +1.5692 | +1.4276 | +1.4268 | +1.4337 | +10000 | +1 000 aT | +1.00001 | +1 0000 | +100001 | +1 0000C | | 3/2 | 1.0 | | +.2000
3365 | | | | | | | +1.0000 | | | | | | | 0.8 | -2 0746 | - 3261 | + 0566 | + 1203 | + 1114 | + 0985 | + 0939 | 0652 | +.1391 | +.2901 | +.3639 | +.3932 | +.4006 | | 11_ | 0.4 | 7384 | -,1975 | +.0076 | +.0543 | +.0475 | +.0367 | +.0328 | 0395 | +.0103 | +.0656 | +.0969 | +.1096 | +.1127 | | a/b | 0.2 | +.3738 | 0607 | 0163 | 0110 | 0213 | 0289 | 0313 | 0121 | 0757 | 255 | 1550 | 1690 | 1729 | | | 0 | +.3532 | 0 | 0314 | 0664 | 0846 | 0917 | 0934 | 0 | 1570 | 3320 | 4231 | 4584 | 4670 | | | | Ry → | +.3532 | 3898 | -1.1608 | -1.4315 | -1.4935 | -1.5015 | | | | | | | | ¥ | | | | | | | | | | | | ~ | | | Figure 17.—Plate fixed along three edges—Hinged along one edge, moment and reaction coefficients, Load VIII, moment at hinged edge. FIGURE 18.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load I, uniform load. | | | | | | ٨ | 1 _x | | • | My | | | | | | | | |--|-----|--------------------------------|--------|--------------|--------------|----------------
--------------|----------------|----|--------------|----------------|--------------|--------------|----------------|--|--| | | У/Ь | R _X X/ _Q | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | | 1.0 | 0005 | 0 | - 0002 | - 0003 | 0004 | 0005 | 0005 | 0 | 0.2 | 0.4 | 0.0 | 0.8 | 0 | | | | -% | 0.8 | +.0104 | 0 | 0005 | 0009 | 0012 | 0015 | 0014 | 0 | +.0000 | +.0001 | +.0001 | +.0001 | <u> </u> | | | | | 0.6 | +.0949 | 0 | 0020 | 0034 | 0045 | 0051 | 0053 | 0 | 0005 | 0009 | 0012 | 0013 | 0014 | | | | " | 0.4 | +.1251 | 0 | 0026 | 0045 | 0059
0048 | 0067 | 0070 | 0 | 0007 | 0012 | 0016 | 0018 | 0019 | | | | ٩/ _p | 0.2 | +.0000 | 0 | +.0005 | +.0009 | +.0012 | +.0014 | 0056
+.0015 | 0 | +.0007 | +.0046 | +.0016 | +.0070 | | | | | | | Rx Ry | +.0000 | +.0858 | +.1332 | +.1616 | + 1779 | +.1830 | l | 1.0023 | 17.0046 | 1 + .0001 | 14.0070 | 1+.0073 | | | | | 1.0 | 0012 | 0 | 0020 | 0039 | 0053 | 0062 | 0065 | 0 | 0 | 0 | 0 | 0 | 0 | | | | ' 4 | 0.8 | +.0413 | 0 | 0031 | 0058 | 0078 | 0091 | 0095 | 0 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001 | | | | 1 | 0.6 | +.1802 | 0 | 0063
0072 | 0110 | 0142
0157 | 0161 | 0167 | 0 | 0023 | 0041 | 0055 | 0063 | 0066 | | | | ما | 0.4 | +.1272 | | 0046 | 0075 | 0091 | 0100 | 0183 | 0 | 0032 | 0058
0039 | 0077
0051 | 0088
0058 | 0092
0060 | | | | 0/p | 0 | 0821 | 0 | + | +.0034 | +.0045 | | +.0054 | 0 | +.0094 | +.0170 | +.0225 | +.0258 | | | | | | | R _X R _Y | 0821 | +.1677 | +.2555 | +.3095 | +.3389 | +.3483 | | 1 | | | 1.0200 | 10200 | | | | | 1.0 | +.0280 | 0 | 0060 | 0113 | 0154 | 0179 | 8810 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 3/8 | 0.8 | +.0821 | 0 | 0073 | 0134 | 0178 | 0206 | 0215 | 0 | 0007 | 0014 | 0019 | 0023 | 0024 | | | | 11 | 0.6 | +.2388 | 0 | 0108
0109 | 0183
0177 | 0232
0218 | - 0260 | 0269 | 0 | 0051 | 0092 | 0121 | 0139 | 0145 | | | | ا م | 0.2 | +.1088 | 0 | 0060 | 0089 | 0101 | 0105 | 0246 | 0 | 0064 | 0115
0041 | 0152 | 0174
0052 | 0053 | | | | 9/p | 0 | 1488 | 0 | +.0035 | +.0063 | +.0083 | +.0095 | +.0099 | 0 | +.0173 | +.0314 | +.0416 | +.0477 | +.0497 | | | | 1 1 | | R _X R _X | 1488 | +.2333 | +.3475 | +.4166 | +.4538 | | , | 10.10 | | 1.0 7.0 | 1.0117 | , | | | | | 1.0 | +.1033 | 0 | 0102 | 0190 | 0255 | 0296 | 0309 | 0 | 0 | 0 | 0 | 0 | 0 | | | | % | 0.8 | +.1094 | 0 | 0112 | - 0201 | 0265 | - 0302 | 0315 | 0 | 0019 | 0037 | 0053 | 0063 | 0067 | | | | 1 1 | 0.6 | + 2693 | 0 | 0143 | 0235 | 0291 | 0321 | 0330 | 0 | 0081 | 0144 | 0188 | 0215 | 0224 | | | | "_ | 0.4 | +.2881 | 0 | 0133
0065 | 0205
0084 | 0241
0085 | 0257
0082 | 0262
0081 | 0 | 0090
0012 | 0157
0009 | +.0001 | +.0010 | 0237
+.0013 | | | | ٩/ _p | 0.2 | 1793 | 0 | +.0055 | +.0098 | | +.0146 | +.0151 | 0 | +.0276 | +.0492 | +.0642 | +.0729 | +.0757 | | | | | | R _X R _Y | 1793 | +.2895 | +.4246 | +.5005 | +.5392 | +.5512 | | | | | | | | | | | 1.0 | +.3075 | 0 | 0158 | 0281 | 0363 | - 0409 | 0423 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 3% | 0.8 | +.1194 | 0 | 0161 | 0273 | 0341 | 0376 | 0386 | 0 | 0039 | 0076 | 0106 | 0124 | 0130 | | | | " | 0.6 | +.2754 | 0 | 0185
0158 | 0277
0211 | 0320
0223 | 0338
0223 | 0343
0222 | 0 | 0121 | 0206 | 0260
0207 | 0290 | 0299 | | | | 1 1 | 0.2 | +.0037 | 0 | 0060 | 0052 | 0031 | 0016 | 0011 | 0 | +.0044 | 0175
+ 0111 | +.0175 | +.0219 | +.0234 | | | | 8 | 0 | 1906 | 0 | +.0096 | | | +.0235 | +.0243 | 0 | +.0482 | | +.1052 | +.1176 | +.1216 | | | | | | RX | 1906 | +.3764 | +.5274 | +.6009 | +.6352 | +.6452 | | ر | | | | | | | | | 1.0 | +.4673 | 0 | 0184 | 0304 | 0366 | 0392 | 0399 | 0 | 0 | 0 | 0 | 0 | 0 | | | | - | 0.8 | +.1073 | 0 | 0184 | 0286 | 0329 | 0344 | 0346 | 0 | - 0048 | 0091 | 0120 | 0137 | 0142 | | | | " | 0.6 | +.2619 | 0 | 0203
0165 | 0273
0189 | 0288 | 0287 | 0285
0154 | 0 | 0140
0107 | 0220 | 0261
0140 | 0277 | 0282
0122 | | | | 8 | 0.2 | 0251 | 0 | 0047 | | | +.0047 | +.0054 | 0 | - | | +.0364 | +.0438 | +.0463 | | | | • | 0 | 1712 | 0 | +.0133 | +.0220 | +.0273 | +.0301 | +.0310 | 0 | | +.1101 | | +.1507 | +.1552 | | | | L | | RY
Rx | 1712 | +.4372 | +.5845 | +.6467 | +.6731 | +.6805 | | | | | | | | | | | 1.0 | +.6045 | 0 | 0213 | 0285 | 0279 | 0257 | 0246 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 3/2 | 0.8 | +.0865 | 0 | 0209 | 0258 | 0241 | 0214 | 0204 | | 0057 | 0092 | 0102 | 0102 | 0100
0170 | | | | " | 0.6 | +.2515 | 0 | | 0230
0131 | | - | 0154
0043 | 0 | 0156
0087 | | +.0020 | | | | | | ا م | 0.2 | 0201 | 0 | + | +.0053 | | _ | +.0140 | 0 | - | +.0477 | | +.0750 | | | | | ^ [| 0 | 1167 | | | +.0295 | | | | 0 | | | | +.1888 | +.1929 | | | | | | P. | 1167 | +.5160 | +.6384 | +.6754 | +.6867 | +.6891 | | | | | | | | | | Free Mament = (Coefficient) (pb²) Reaction = (Coefficient) (pb) W | | | | | | | | | | | | | | | | | | | • | | | ⊷-p->-i | | | | | | | POSITI | VE SIGN | N CONVE | NTION | | | $\begin{tabular}{ll} Figure 19.--Plate fixed along one edge--Hinged along two opposite edges, moment and reaction coefficients, Load II, 2/3 \\ uniform load. \\ \end{tabular}$ | | T | | | | A. | 1 _x | | | | | | | | | | | |------------------|--|--------------------------------|--|--------------|------------------|------------------|------------------|------------------------|--|--------|--------------|----------------|--|---------|--|--| | 1 | y/b | R _x X/ _Q | _ _ | T = = | | | | · | My | | | | | | | | | | | | | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | 1 _ | 0.8 | +.0001 | 0 | 0000 | | 0000 | | | | 0 | 0 | 0 | 0 | 0 | | | | ~ % | 0.6 | +.0011 | | 0001 | 0003 | 000 I
0003 | 000 I | | 0 | | | | + 0000 | _ | | | | 11 | 0.4 | +.0304 | 0 | 0007 | 0013 | 0017 | 0020 | 0021 | 0 | +.0000 | | | | +.0001 | | | | %
9% | 0.2 | +.0966 | 0 | 0017 | 0030 | | 0043 | 0044 | 1 | 0007 | 0002
0013 | 0003
0017 | | 0003 | | | | 0 | 0 | + .0059 | 0 | +.0005 | +.0008 | +.0011 | +.0013 | | 0 | +.0023 | +.0042 | | +.0063 | | | | | ļ | | R _x R _y | +.0059 | +.0830 | +.1263 | +.1528 | | | | 1 | 1.0042 | 11.0000 | 11.0003 | 14.0088 | | | | } | 1.0 | 0024 | 0 | 0002 | 0004 | 0006 | 0007 | 0008 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 74 | 0.8 | + 0019 | 0 | 0004 | 0007 | 0010 | 0012 | 0012 | 0 | +.0001 | +.0002 | +.0002 | +.0003 | +.0003 | | | | - | 0.6 | +.0099 | 0 | 0009 | 0016 | 0022 | 0025 | 0027 | 0 | +.0000 | +.0001 | +.0001 | +.0001 | +.0001 | | | | 1 | 0.4 | +.0614 | 0 | 0021 | 0036 | 0046 | 0052 | 0054 | 0 | 0008 | 0015 | | 0024 | 0025 | | | | \
2 | 0.2 | +.1193
0327 | 0 | +.0013 | 0047
+.0023 | 0055 | 0059 | 0060 | 0 | 0024 | 0042 | | | 0064 | | | | 1 | - | R Ry | 0327 | +.1414 | +.2062 | +.0030 | +.0034 | + .2659 | 0 | +.0065 | +.0115 | +.0150 | +.0170 | +.0177 | | | | | 1.0 | 0026 | 0 | 0009 | 0017 | 0023 | 0027 | 0028 | 0 | 0 | 0 | 0 | 0 | | | | | _00 | 0.8 | +.0080 | 0 | 0011 | 0021 | 0028 | 0033 | 0034 | Ö | | +.0001 | +.0002 | +.0002 | +.0002 | | | | 3/8 | 0.6 | +.0207 | 0 | 0017 | 0031 | 0041 | 0047 | 0049 | 0 | 0003 | 0005 | 0008 | 0009 | 0010 | | | | n i | 0.4 | +.0759 | 0 | 0030 | 0050 | 0060 | 0066 | 0067 | 0 | 0018 | 0033 | 0045 | 0052 | 0054 | | | | 9/p | 0.2 | +.1236 | 0 | 0039 | 0052 | 0054 | 0054 | 0053 | 0 | 0034 | 0057 | 0071 | 0079 | 0081 | | | | 0 | 0 | 0496 | 0 | +.0019 | +.0033 | +.0043 | +.0048 | +.0050 | 0 | +.0094 | +.0166 | +.0214 | +.0242 | +.0250 | | | | | | R _X | 0496 | +.1783 | +.2458 | +.2806 | +.2970 | +.3018 | | | | | | | | | | | 1.0 | +.0058 | 0 | 0015 | 0029 | 0039 | 0046 | 0048 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 2/ | 0.8 | +.0128 | 0 | 0017 | 0032 | 0043 | 0050 | 0052 | 0 | 0001 | 0002 | 0003 | 0004 | 0004 | | | | 1 1 | 0.6 | +.0263 | 0 | 0023 | 0040 | 0052 | 0058 | 0060 | 0 | 0007
 0013 | 0019 | 0023 | 0024 | | | | " | 0.4 | +.0788 | 0 | 0036
0042 | 0054 | 0062 | 0065 | 0065 | 0 | 0026 | 0047 | 0062 | 0071 | 0073 | | | | % | 0.2 | 0477 | 0 | | +.0048
+.0045 | +.0056 | +.0062 | 0040
+.0063 | 0 | 0039 | 0061 | 0070 | 0073 | 0074 | | | | | <u> </u> | R _x Ry | 0477 | | | | +.3166 | +.3200 | | +.0131 | +.0223 | +.0279 | +.0308 | +.0317 | | | | | 1.0 | +.0340 | 0 | 0024 | 0043 | 0056 | 0064 | 0066 | 0 | 0 | 0 | 0 | 0 1 | - | | | | | 0.8 | +.0148 | 0 | 0025 | 0043 | 0055 | 0061 | 0062 | 0 | 0003 | 0008 | 0012 | 0015 | 0016 | | | | 3/4 | 0.6 | +.0267 | 0 | 0030 | 0047 | 0055 | 0058 | 0058 | ō | 0012 | 0024 | 0034 | 0040 | 0042 | | | |] 11 | 0.4 | +.0752 | 0 | 0043 | 0054 | 0054 | 0052 | 0051 | 0 | 0036 | 0059 | 0073 | 0079 | 0080 | | | | 8 | 0.2 | +.1134 | 0 | 0043 | 0037 | 0028 | 0022 | 0020 | 0 | 0042 | 0051 | 0046 | 0040 | 0038 | | | | 0 | 0 | 0337 | 0 | +.0039 | + .0062 | +.0074 | +.0080 | +.0081 | 0 | +.0196 | +.0309 | +.0369 | +.0398 | +.0406 | | | | | | R _X R _Y | - 0337 | | | +.3256 | | +.3338 | | | | | | | | | | 1 | 1.0 | +.0569 | 0 | 0027 | 0046 | | 0060 | 0061 | 0 | 0 | 0 | 0 | 0 | 0 | | | | - | 0.8 | +.0131 | 0 | | 0045 | | 0054 | 0054 | 0 | | | 0015 | 0018 | 0019 | | | | 1 " | 0.6 | +.0233 | 0 | | | 0048 | 0047 | 0046 | 0 | | 0028 | 0036 | 0041 | 0042 | | | | 1% | 0.2 | +.1190 | 0 | 0045
0039 | 0048
0026 | 0042 | 0038 | 0036 | 0 | 0041 | 0061 | 0067 | 0068 | 0067 | | | | ° | 0.2 | 0171 | | +.0050 | | 0015 -
+.0085 | +.0009
+.0091 | +.0007
+.0092 | 0 | | 0034 | 0017 | | 0001 | | | | 1 t | _ | R _X Ry | | | | +.3328 | | +.3376 | <u> </u> | +.0248 | +.0369 | +.0426 | +.0453 | +.0461 | | | | | 1.0 | +.0765 | 0 | 0032 | | | | 0036 | 0 | 0 1 | 0 | 0 | 0 1 | | | | | 3/2 | 0.8 | +.0102 | ō | | | | + | 0030 | 0 | 0005 | | | | 0014 | | | | I L | 0.6 | +.0180 | 0 | | | 0032 | | | | | | | 0028 | | | | |] " [| 0.4 | +.0688 | 0 | 0044 | 0036 | 0025 | 0019 | 0017 | 0 | 0046 | 0053 | 0047 | 0040 | 0037 | | | | 중 [| 0.2 | +.1465 | 0 | | | +.0000 | | +.0007 | 0 | 0030 | | $\overline{}$ | | +.0046 | | | | 1 2 1 | ٥ | +.0106 | | | | +.0098 | | +.0103 | 0 | +.0321 | +.0439 | +.0488 | + 0510 | +.0516 | | | | oxdot | | - Ry | +.0106 | +.2977 | +.3305 | +.3360 | +.3372 | +.3374 | | | | | | | | | | Free Hir | a | | | | | | | efficient
efficient | | | Mx (| R ₁ | \rangle \ran | X | | | | * -* | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,¥ | -x Y | - p - | | | | | | | WPOSITIV | VE SIGN | M, | NTION | | | FIGURE 20.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load III, 1/3 uniform load. | | | | Mx | | | | | | | My | | | | | | | | |-----------------|---------------|-------------------------------|-----------------------|--------------|--------------|---------------|-------------|------------------------|--|--|------------|----------------|--------------|--------------|--|--|--| | ľ | y/b | R _X X/0 | 0 0.2 0.4 0.6 0.8 1.0 | | | | | | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | | | 1.0 | +.0094 | 0 | 0003 | 0006 | 0008 | 0010 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | <u>«</u> | 0.8 | + 0253 | 0 | 0006 | 0011 | 0015 | 0017 | 0017 | 0 | 0001 | 0002 | 0002 | 0002 | 0003 | | | | | - | 0.6 | +.0500 | 0 | 0011 | 0020 | 0026 | 0030 | 0031 | 0 | 0002 | 0004 | 0005 | 0006 | 0006 | | | | | = q/o | 0.4 | +.0758 | 0 | 0016
0015 | 0028 | 00 3 7 | 0042 | 0044 | 0 | 0004 | 0007 | 0009
0013 | 0011 | 0011 | | | | | | 0.2 | +.0833 | 0 | +.0004 | | | +.0012 | +.0012 | 0 | +.0021 | +.0039 | +.0051 | +.0058 | | | | | | | <u> </u> | R _x R _y | +.0043 | +.0775 | +.1180 | +.1417 | +.1551 | +.1591 | | 1.0021 | | | 1 | | | | | | | 1.0 | +.0249 | 0 | 0022 | 0040 | 0054 | 0062 | 0065 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | _ t | 0.8 | +.0548 | 0 | 0028 | 0051 | 0067 | 0077 | 0081 | 0 | 0004 | 0006 | 0008 | 0010 | 0010 | | | | | ₹ | 0.6 | +.1014 | 0 | 0040 | 0070 | 0091 | 0104 | 0108 | 0 | 0012 | 0021 | 0028 | 0032 | 0033 | | | | | 11 | 0.4 | +.1388 | 0 | 0046 | | 0100 | 0113 | 0117 | 0 | 0019 | 0034 | 0046 | 0052 | 0055 | | | | | 0/ _ه | 0.2 | +.1003 | 0 | 0033 | | 0065 | 0071 | 0072 | 0 | 0018 | 0031 | 0041 | 0046 | 0048 | | | | | ٥` ا | 0 | 0513 | 0 | | +.0025 | | +.0038 | +.0040 | 0 |]+.0071 | +.0127 | +.0167 | +.0191 | +.0199 | | | | | | $\overline{}$ | R _X R _Y | 0513 | +.1404 | +.2080 | | +.2688 | +.2754 | | 1 0 | | 0 | 0 | 0 | | | | | - } | 1.0 | +.0631 | 0 | 0054
0060 | 0099
0108 | 0133 | 0154 | 0160
0170 | 0 | 0011 | 0020 | 0026 | 0030 | 0031 | | | | | 3% | 0.8 | +.0852 | 0 | 0071 | 0122 | 0156 | 0176 | 0183 | 0 | | 0050 | 0066 | 0076 | 0079 | | | | | - 1 | 0.6 | +.1388
+.1701 | 0 | 0070 | 0116 | 0143 | ₹.0158 | 0162 | 0 | 0038 | | 0091 | 0104 | 0108 | | | | | ا ما | 0.4 | +.0890 | 0 | 0044 | 0064 | 0071 | 0074 | 0074 | 0 | 0021 | 0033 | 0040 | 0043 | 0044 | | | | | %
% | 0.2 | 0960 | 0 | | +.0045 | | + 0068 | +.0071 | 0 | +.0124 | | +.0296 | +.0339 | +.0353 | | | | | ŀ | | R _x R _y | 0960 | +.1886 | + 2717 | +.3203 | | +.3538 | | | | | | | | | | | | 1.0 | +.1322 | 0 | 0087 | 0159 | 0210 | 0241 | 0252 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | ا ہے | 0.8 | +.1049 | 0 | 0090 | 0159 | 0207 | 0235 | 0244 | 0 | 0021 | 0038 | 0050 | 0058 | 0061 | | | | | ~ <u>`</u> | 0.6 | +.1584 | 0 | 0096 | 0161 | 0201 | 0224 | 0231 | 0 | 0045 | 0080 | 0106 | 0121 | 0127 | | | | | - 11 [| 0.4 | +.1757 | 0 | 0087 | 0136 | 0161 | 0173 | 0176 | 0 | 0053 | 0092 | 0119 | 0134 | 0139 | | | | | 9/p | 0.2 | +.0595 | 0 | 0047 | 0060 | | 0058 | 0057 | 0 | 0011 | 0010 | 0004 | +.0002 | +.0005 | | | | | 9 [| 0 | 1169 | 0 | | +.0070 | | +.0103 | +.0107 | 0 | +.0198 | +.0351 | +.0455 | +.0515 | +.0535 | | | | | | | R _x R _y | | _ | +.3261 | | +.4050 | + 4130 | | 1 _ | | | | | | | | | | 1.0 | +.3017 | 0 | 0132 | | 0292 | 0326 | 0337
0299 | 0 | 0036 | 0065 | 0086 | 0098 | 0
0102 | | | | | 3/4 | 0.8 | +.1125 | 0 | | 0214 | 0265
0227 | 0291 | 0246 | 0 | 0066 | 0114 | - 0145 | 0162 | 0168 | | | | | + | 0.6 | +.1595 | 0 | | 0142 | 0151 | 0152 | 0152 | 0 | 0060 | 0093 | -0109 | 0114 | 0115 | | | | | "_ | 0.4 | +.0115 | 0 | 0043 | | 0021 | 0011 | 0007 | 0 | | +.0080 | +.0128 | +.0161 | +.0172 | | | | | 9/6 | 0.2 | 1259 | 0 | | +.0119 | +.0151 | +.0168 | +.0174 | 0 | +.0348 | +.0594 | +.0753 | +.0842 | +.0871 | | | | | _ } | | R _X R _y | 1259 | +.2925 | +.3991 | +.4504 | +.4744 | +.4816 | | | | | | | | | | | | 1.0 | +.4312 | 0 | 0154 | 0247 | 0293 | 0312 | 0317 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | _ 1 | 0.8 | +.1046 | 0 | ~.0147 | 0224 | 0256 | 0268 | 0270 | 0 | 0043 | 0073 | 0093 | 0103 | | | | | | - 1 | 0.6 | +.1468 | 0 | 0139 | 0191 | 0205 | 0205 | 0204 | 0 | 0073 | 0115 | 0135 | + | 0145 | | | | | " | 0.4 | +.1380 | 0 | 0109 | 0125 | 0117 | 0107 | 0103 | 0 | 0050 | 0059 | 0048 | - 0035 | | | | | | 0⁄ _ه | 0.2 | 0109 | 0 | 0032 | | | +.0036 | +.0041 | 0 | | +.0186 | +.0275 | + | +.0350 | | | | | | 0_ | 1123 | 0 | | +.0159 | | | +.0226 | 0 | +.0482 | +.0797 | +.0990 | 1+.1094 | +.1128 | | | | | | | R _X R _Y | -1123 | +.3359 | ļ | | +.5035 | | | 1 0 | 0 | 0 | 0 | 0 | | | | | | 1.0 | +.5418 | 0 | 0175
0164 | + | + | | 0197 | 0 | 0048 | - 0069 | | 0070 | | | | | | 3/2 | 0.8 | +.0931 | 0 | | 0160 | | | | ŏ | + | 0086 | | | 0050 | | | | | - 11 | 0.6 | +.1335 | 0 | | 0083 | | | | 0 | | | | +.0129 | +.0144 | | | | | | 0.2 | 0072 | | | +.0043 | | | | 0 | +.0178 | +.0365 | | +.0579 | +.0604 | | | | | 0/p | 0 | 0724 | 0 | | +.0216 | | | +.0285 | 0 | +.0694 | +.1079 | +.1289 | +.1394 | +.1426 | | | | | | | Ry | 0724 | +.3914 | +.4785 | +.5060 | +.5149 | +.5169 | <u> </u> | | | | | | | | | | Free H | inged | > | | | | | • | oefficien
oefficien | | | Mx (| R _x | P My | | | | | | mm | 777777 | <i>,,,,</i> , | . ¥x | ¥ 0 × | | | | | | | W
POSIT | TIVE SI | M,
GN CON | · | | | | Figure 21.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load IV, uniformly varying load. | $8/_1 = 9/_0$ $8/_1 = 9/_0$ | y/b
i.0
o.8
o.6
o.4
o.2
o | Rx X/0
0004
+.0007
+.0152
+.0508
+.0721
+.0065 | 0
0
0
0 | 0.2
0000
0001 | + | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | | | | |--|---|--|------------------|---|---------------|--------------------|----------------------|--------------|-------------|----------------|--------------|----------------|----------------|--------------|--|--|--| | a/b = 1/4 $a/b = 1/6$ | 0.8
0.6
0.4
0.2
0 | +.0007
+.0152
+.0508
+.0721 | 0 | 0.8 +.0007 00001000100020002 0 +.0000 +.0000 +.0001 | | | | | | | | | | | | | | | a/b = 1/4 $a/b = 1/6$ | 0.6
0.4
0.2
0 | +.0152
+.0508
+.0721 | 0 | + | | + | + | | 0 | 0 | | | 0 | 1.0 | | | | | 0/b = 1/4 0/b | 0.4
0.2
0 | +.0508
+.0721 | 1 | 1 - OOO4 | | + | | | + | + | + | | +.0001 | | | | | | 0/b = 1/4 0/b | 0.2 | +.0721 | I | 0011 | 0019 | + | 0011 | 0012 | | - 0000 | 0001 | 0001 | 0001 | | | | | | a/b = 1/4 | 1.0 | +.0065 | 0 | 0013 | 0023 | + | 0034 | - | + | 0003 | 0005 | 0006 | 0007 | | | | | | = q/ ₀ | | | 0 | +.0004 | +.0007 | + | + 0010 | + | + | +.0019 | +.0035 | | 0013
+.0052 | + 0055 | | | | | = q/ ₀ | | R _x R _y | +.0065 | + | +4100 | +.1316 | +.1436 | +.1476 | | | | | 17.0032 | 11.0033 | | | | | = q/ ₀ | | 0025 | 0 | 0005 | 0009 | + | 0015 | 0015 | | 0 | 0 | 0 | 0 | 0 | | | | | 0/p | 0.6 | +.0067 | 0 | 0008
0017 |
0014
0030 | | 0023
0045 | 0024 | | +.0001 | +.0002 | | | +.0003 | | | | | - | 0.4 | +.0915 | 0 | 0028 | 0048 | | 0049 | 0047 | 0 | 0003 | 0006
0024 | 0008
0032 | 0010 | 0010 | | | | | - | 0.2 | +.0885 | 0 | 0026 | 0041 | | 0053 | 0054 | | 0016 | 0024 | 0032 | 0037
0043 | 0038
0045 | | | | | | <u> </u> | 0314 | 0 | +.0011 | +.0020 | +.0026 | +.0030 | | 0 | +.0057 | +.0102 | | +.0150 | +.0156 | | | | | 1 | <u> </u> | R _X R _Y | 0314 | _ | +.1807 | | +.2282 | | | | | | | | | | | | | 0.8 | +.0015 | 0 | 0016
0019 | 0030 | 0040 | 0047 | 0050 | | 0 | 0 | 0 | 0 | 0 | | | | | 3/8 | 0.6 | +.0531 | 0 | 0030 | 0036
0052 | 0048 | 0056
0076 | 0059 | | 0000 | 0001 | 0001 | 0001 | 0002 | | | | | u l | 0.4 | +.1106 | 0 | 0041 | 0066 | 0081 | 0088 | 0079
0090 | + | 0010 | 0019
0048 | 0025
0063 | - 0029 | 0031 | | | | | % | 0.2 | +.0876 | 0 | OD33 | 0046 | 0050 | 0051 | 0051 | 0 | 0023 | 0038 | 0047 | 0072
0052 | 0075
0053 | | | | | 0 | 0 | 0539 | 0 | +.0018 | +.0032 | +.0041 | +.0047 | +.0049 | 0 | | | +.0206 | | +.0243 | | | | | | | R _X R _Y | 0539 | | +.2213 | +.2550 | +.2718 | +.2769 | | | | | | | | | | | 1 1 | 1.0 | +.0192 | 0 | | 0051 | 0069 | 0080 | 0084 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | U [0.4]+ 1150 0 [- 0049]- 0074 0005 0000 0001 | | | | | | | | | | | | | | | | | | | 0.4 + .1150 000490074008600900091 00037006500840095 | | | | | | | | | | | | | | | | | | | 0.2 +.0760 000360044004200390038 0002300330037003700
00580 0 +.0026 +.0045 +.0058 +.0064 +.0067 0 +.0130 +.0226 +.0288 +.0322 +.0 | | | | | | | | | | | | | | | | | | | 0 - 0500 0 + 0025 + 0045 + 0050 + 0050 | | | | | | | | | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | | | R _x | | | | | | | | | | | | | | | | | | | 1.0 +.0720 000420076009901110115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | | | 0.8 +.0287 000430075009401040107 0000800170025003000 0.6 +.0634 000520079009200970098 0002900520068007700 0.4 +.1099 000580075007700750074 000490078009401040104 | | | | | | | | | | | | | | | | | | | ام | 0.2 | +.0614 | 0 | | 0031 | 0022 | | 0013 | 0 | | 0005 | | | 0103 | | | | | 9/p | 0 | 0506 | 0 | +.0042 | +.0068 | +.0084 | + .0092 | | | | | | | .0471 | | | | | [| | | 0506 | +.2266 | 2910 | +.3166 | +.3271 | + 3300 | | | | | | | | | | | ' ⊦ | 1.0 | +.1140 | + | | $\overline{}$ | 0099 | 0106 | 0108 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | - | | +.0254 | | \rightarrow | 0078 | | | 0095 | | | | | | 0036 | | | | | " - | $\overline{}$ | +.1043 | 0 | | 0078
0067 | 0082
0061 | | 0080
0053 | 0 | | | | | 0078 | | | | | 9/9 | | +.0590 | | | | | F.0004 | | | | | | | 0077 | | | | | ° [| 0 | 0362 | 0 | | | +.0102 | | | | | | | | .0565 | | | | | | | R _X Ry | 0362 | +.2528 + | | | | + . 3/3 86 | | | | | | | | | | | H | | +.1502 | | | | 0075 | | 0066 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 3/2 | | +.0198
+.0526 | - | | | 0065 - | | | | - 0012 - | | | | | | | | | - n | | +.1036 | | | .0049 | 0055 -
0034 - | | 0042
0021 | 0 | 0039
0054 - | - | | .0051 - | 0049 | | | | | 8 | | +.0748 | | 0020 + | - | | .0028 | | + | | | .0139 + | | .0174 | | | | | o` [| 0 | 0083 | | $\overline{}$ | .0107 - | | 0131 | | + | | | | | .0666 | | | | | | 1 | Ry- | 0083 | 2838 + | .3265 | +.3366 | +.3393 | .3398 | | | | | | | | | | | Free Hin | nged | | _x | | • - | | nt = (Co
on = (Co | | | | M | R _x | M, CONVE | → X | | | | FIGURE 22.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load V, 2/3 uniformly varying load. | | | | | · | N | 1 _x | | | | | N |
Лу | | | | |---|---|-------------------------------|--------------|--------------|--------------|----------------|--------------|------------------------|---|----------------|--------------|----------------|---------------|------------------|--| | | у/ь | R _X X/o | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | 1.0 | +.0000 | 0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0 | 0 | 0 | 0 | 0 | 0 | | | <u>_</u> e | 0.8 | 0002 | 0 | 0000 | | | 0000 | 0000 | 0 | +.0000 | +.0000 | +.0000 | +.0000 | | | | | 0.6 | +.0001 | 0 | 0000 | | 0001 | 0001 | 0001 | 0 | +.0000 | +.0000 | | +.0000 | +.0000 | | | " | 0.4 | +.0395 | 0 | 0007 | 0003 | 0005 | 0005 | 0006
0017 | 0 | 0000 | 0000
0005 | 0000
0006 | 0000
0007 | 0000
0007 | | | % | 0.2 | +.0111 | 0 | | +.0005 | | +.0007 | +.0008 | 0 | +.0014 | +.0025 | +.0032 | + 3037 | +.0036 | | | | | R _X R _Y | +.0111 | +.0616 | | | +.1125 | +.1149 | | 1 | | | | | | | | 1.0 | 0008 | 0 | 0001 | † | 0002 | 0002 | 0002 | 0 | 0 | 0 | 0 | 0 | 0 | | | 🛂 | 0.8 | +.0004 | 0 | 0001 | 0002 | | 0003 | 0003 | 0 | +.0000 | +.0001 | +.0001 | +.0001 | +.0001 | | | 1 1 | 0.6 | +.0030 | 0 | 0002
0006 | 0005
0010 | | 0007 | 0008 | 0 | +.0000 | | +.0000 | $\overline{}$ | +.0000 | | | ا ۃ ا | 0.4 | +.0133 | - 0 | 0012 | 0017 | 0013
0020 | 0015
0021 | 0015
0022 | 0 | 0002 | 0003
0015 | 0004
0020 | 0005
0023 | 0005
0024 | | | %
% | 0 | 0008 | 0 | | +.0011 | +.0014 | +.0016 | | 0 | +.0032 | +.0055 | +.0070 | +.0078 | +.0080 | | | | | R _x R _y | 0008 | +.0923 | +.1244 | +.1400 | +.1472 | +.1493 | | | | | | | | | | 1.0 | 0010 | 0 | 0002 | + | 0006 | 0007 | 0008 | 0 | 0 | 0 | 0 | . 0 | 0 | | | 3% | 0.8 | +.0020 | 0 | 0003 | 0006 | 0008 | 0009 | 0010 | 0 | +.0000 | +.0001 | +.0001 | +.0001 | +.0001 | | | 1 1 | 0.6 | +.0051 | 0 | 0005 | + | 0012 | 0013 | 0014 | 0 | 0000 | 0001 | 0001 | 0002 | 0002 | | | " | 0.4 | +.0174 | 0 | 0008 | 0014 | 0017 | 0019
0019 | 0019 | 0 | 0004 | 0008
0022 | 0010 | 0012 | 0013 | | | 8 | 0.2 | +.0529 | | | +.0014 | | +.0020 | +.0019 | 0 | 0013
+.0040 | +.0069 | 0028
+.0088 | +.0031 | 0032
+.0101 | | | | | R _v R _v | 0047 | +.1091 | +.1384 | | +.1577 | +.1593 | _ | 1 .0040 | 1.0003 | 1.0000 | 1.0036 | ````` | | | | 1.0 | +.0010 | 0 | 0004 | | 0011 | 0012 | 0013 | 0 | Q | 0 | 0 | 0 | 0 | | | اہا | 0.8 | +.0033 | 0 | 0005 | 0009 | 0012 | 0014 | 0014 | 0 | 0000 | 0000 | 0001 | 0001 | 0001 | | | % | 0.6 | +.0066 | 0 | 0006 | | 0014 | 0016 | 0017 | 0 | 0001 | 0003 | 0004 | 0005 | 0006
0018 | | | " | | | | | | | | | | | | | | | | | 00009 0 +.0011 +.0018 +.0022 +.0024 +.0024 0 +.0054 +.0089 +.0109 +.011 | | | | | | | | | | | | | | 0031
+.0122 | | | ľ | R _X R _y 0009 +.1211 +.1488 +.1593 +.1632 +.1642 | | | | | | | | | | | | | | | | | R _R | | | | | | | | | | | | | | | | .4 | 1.0 +.0083 000060012001500170018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | m | 0.6 +.0068 000080013001500160016 00003000600080010 | | | | | | | | | | | | | | | | 0 | 11 0.4 +.0168 000120015001500140014 00008001500180020 | | | | | | | | | | | | | | | | 9 | \vdash | 1.0 | +.0142 | 0 | 0007 | - | 0015 | 0016 | 0016 | 0 | 0 | 0 | 0 | 0 | • | | | | 0.8 | +.0034 | 0 | 0008 | | 0014 | 0014 | 0014 | 0 | 0001 | 0002 | 0 004 | 0005 | 0005 | | | - | 0.6 | +.0059 | 0 | 0009 | 0013 | 0013 | 0013 | 0012 | 0 | 0003 | 0007 | 0009 | 0010 | 0011 | | | 1 | 0.4 | +.0152 | 0 | 0013 | | | 0010 | 0010 | 0 | 0010 | 0015 | 0017 | 0017 | 0017 | | | 9/p | 0.2 | +.0554 | 0 | 0015 | | 7.000 | 0005 | 0004 | 0 | 0019 | 0020 | 0016 | 0013 | 0011 | | | | 0 | +.0179 | +.0179 | +.1462 | +.0027 | +.0030 | +.0032 | +.0032 | 0 | +.0095 | +.0135 | +.0152 | +.0159 | +.0161 | | | - | 1.0 | +.0193 | 0 | 0009 | | 0011 | 0010 | 0009 | 0 | 1 0 | 0 | Ó | 0 | - | | | 3/2 | 0.8 | +.0026 | - | 0009 | + | 0010 | 0008 | 0008 | 0 | 0001 | 0003 | 0003 | 0004 | 0004 | | | 1 1 | 0.6 | +.0046 | 0 | 0010 | 0010 | 0008 | 0007 | | 0 | 0004 | | 0007 | -:0007 | 0007 | | | " | 0.4 | +.0135 | 0 | • | 0010 | | 0005 | | 0 | 0011 | 0014 | 0012 | $\overline{}$ | 0010 | | | ۵/ _p | 0.2 | +.0679 | <u> </u> | | 0006 | 0002 | 0001 | - | 0 | 0018 | 0011 | 0004 | | +.0001 | | | | 0 | +.0320 | +.0320 | | +.1662 | +.0034 | +.0035 | | 0 | +.0119 | +.0155 | T.0168 | +.0174 | +.0175 | | | | | | | 17.7557 | 1002 | | , ., , , | 0, 3 | | | | | | | | | Free H | inged | , > | T | | | | • • | efficient
efficient | | | Mx. | R |)
M, | | | | | 1 | | | ->-p | | | | | | | POSIT | IVE SIG | N CONVI | ENTION | | Figure 23.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load VI, 1/3 uniformly varying load. | | | | Γ | | N | 1 _x | | | 1 | · | | Лy | | | | |--|---
-------------------------------|---------------|----------|------------------|--------------------|----------------------|----------------|----------|---------|--------------|----------------|----------|---------------|--| | | y/b | Rx X/o | ,0 | 0.2 | 0.4 | 0.6 | 0,8 | 1.0 | 0 | 0 2 | 0.4 | 0.6 | T 0 0 | T | | | | 1.0 | 0000 | 0 | 0000 | 0000 | 0000 | 0000 | 0000 | | 102 | | | 0.8 | 1.0 | | | _% | 0.8 | 0000 | 0 | 0000 | 0000 | 0000 | | 0000 | 4 | | +.0000 | + 0000 | 0 | +.0000 | | | -> | 0.6 | 0000 | 0 | 0000 | 0000 | 0000 | 0000 | 0000 | + | | +.0000 | | +.0000 | | | | - 11 | 0.4 | +.0002 | 0 | 0000 | + | 0001 | 0001 | 0001 | 0 | | | +.0000 | +.0000 | | | | % | 0.2 | +.0134 | 0 | 0002 | | 0004 | 0004 | 0004 | 0 | 0001 | 0001 | 0001 | 0001 | 0001 | | | " | | +.0103 | 0 | +.0002 | | | | +.0004 | | +.0008 | +.0014 | +.0018 | +.0020 | +.0020 | | | <u> </u> | 1.0 | 0002 | +.0103 | +.0459 | +.0630 | +.0699 | | +.0750 | | | | | | | | | | 0.8 | +.0000 | 0 | 0000 | 0000 | 0000
0001 | 0000 | 0000 | <u> </u> | 0 | 0 | 0 | 0 | 0 | | | 74 | 0.6 | +.0007 | 0 | 0000 | 0001 | 0001 | | 0001
0002 | 0 | | +.0000 | +.0000 | +.0000 | | | | 1 0 | 0.4 | +.0015 | 0 | 0001 | 0002 | 0002 | 0003 | 0003 | 0 | 0000 | 0000 | 0000 | 0000 | 0000 | | | 9/p | 0.2 | +.0124 | 0 | 0002 | 0004 | 0004 | 0004 | 0004 | 0 | 0000 | 0000
0003 | 0000 | 0000 | 0000 | | | 0 | 0 | +.0101 | 0 | +.0003 | | +.0005 | | +.0006 | 0 | _ | +.0022 | 0003
+.0027 | 0004 | 0004 | | | | | R _X R _Y | +.0101 | | | +.0792 | | +.0815 | - | 11.0010 | 1.0022 | 1.0027 | +.0029 | +.0030 | | | | 1.0 | 0003 | 0 | 0000 | 000ı | 0001 | 0001 | 0001 | 0 | 0 | 0 | 0 | 0 | 0 | | | 3% | 0.8 | +.0003 | 0 | 0001 | 000 ı | 000ı | 0002 | 0002 | 0 | +.0000 | | +.0000 | | +.0000 | | | | 0.6 | +.0007 | 0 | 0001 | 0002 | 0002 | 0002 | 0003 | 0 | +.0000 | 0000 | 0000 | | 0000 | | | - " | 0.4 | +.0023 | 0 | 0002 | 0003 | 0003 | 0004 | 0004 | 0 | 0000 | 0001 | 0001 | 0002 | 0002 | | | % | 0.2 | +.0149 | 0 | 0004 | 0005 | 0005 | 0004 | 0004 | 0 | 0002 | 0004 | 0006 | | 0007 | | | 1 0 | <u> </u> | +.0108 | 0 | | +.0005 | | +.0006 | +.0006 | ٥ | +.0014 | +.0023 | +.0028 | +.0031 | +.0032 | | | · | 1 | R _X R _y | +.0108 | | +.0770 | | +.0823 | +.0826 | | | | | | | | | | 0.8 | +.0000 | 0 | 0001 | 0001 | 0002 | 0002 | 0002 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0.6 +.0010 000010002000300030003 000000001 - | | | | | | | | | | | | | | 0000 | | | 11 0.4 +.0024 00002000300030003 00001000100010001 | | | | | | | | | | | | | | 0001 | | | 0.2 +.0148 00004000400030003 00003000500060007 | | | | | | | | | | | | | | 0003 | | | 0.2 +.0148 00004000400030003 000030005000600070
0 +.0140 0 +.0004 +.0006 +.0007 +.0007 0 +.0018 +.0028 +.0033 +.0035 +.0 | | | | | | | | | | | | | | 0007 | | | R _g R _y +.0140 +.0710 +.0798 +.0824 +.0832 +.0833 | | | | | | | | | | | | | | | | | R _E R _Y +.0140 +.0710 +.0798 +.0824 +.0832 +.0833 | | | | | | | | | | | | | | | | | | R ₂ R _y +.0140 +.0710 +.0798 +.0824 +.0832 +.0833
1.0 +.0012 00001000200030003 0 0 0 0 0 0 | | | | | | | | | | | | | | | | 0.8 +.0006 00001000200030003 00000000000010001000 | | | | | | | | | | | | | | | | | 0.6 +.0010 00001000200030003 0000000010001000200 0.4 +.0022 00002000300030002 000010002000300030003 | | | | | | | | | | | | | | | | | %
% | 0.2 | +.0153 | 0 | 0004 | 0003 | 0002 | 0002 | 0002 | 0 | | | - 0005 | | 0005 | | | 0 | 0 | +.0202 | 0 | +.0005 | +.0007 | +.0008 | +.0008 | +.0008 | 0 | | | | +.0040 | | | | \vdash | | | | | +.0822 | +.0833 | +.0836 | +.0836 | | | | | | | | | 1 1 | 1.0 | +.0021 | 0 | | 0002 | | | 0003 | 0 | 0 | 0 | 0 | 0 | 0 | | | - | 0.8 | +.0005 | 0 | | | | | 0002 | 0 | 0000 | | 0001 | 0001 | 1000. | | | " | 0.6 | +.0009 | 0 | | | | | 0002 | 0 | | | | | 0002 | | | 8 | 0.4 | +.0166 | | | 0002 -
0002 - | 0002 | | 0002 | 0 | | | | | 0003 | | | 0 | 0.2 | +.0252 | | +.0006+ | | 0002 -
+.0008 + | | 0001
+.0009 | 0 | | | | 0004 - | | | | 1 1 | | | $\overline{}$ | | | | - | 0836 | 0 | +.0028 | +.0038 H | 1.0041 | +.0042 | 0043 | | | | 1.0 | +.0028 | 0 | | | 0002 | | 0001 | 0 | 0 | 0 | 0 1 | <u> </u> | _ | | | 3/2 | 0.8 | +.0004 | Ö | | | 0002 | 0001 | 0001 | | | | | 0001 - | 0001 | | | ا س ا | 0.6 | +.0007 | 0 | 0002 | | 0001 | | | 0 | 0001 - | | | 0001 - | | | | " [| 0.4 | +.0014 | 0 | 0002 - | | | - | 0001 | 0 | | 0002 | | | 0001 | | | % | 0.2 | +.0204 | 0 | 0003 - | 0001 | 0001 | 0000 - | 0000 | | | | | | .0002 | | | | 0 | +.0327 | | + 0007 1 | | +.0009 + | 0009 | 0009 | | | | | | 0045 | | | igsquare | | Ry | + 0327 | + 0810 + | 0834 | 1.0835 | +.0835 + | .0835 | | | | | | | | | Free Hil | ged | | · | ż | | | nt = (Go
on = (Go | | | | M: | R, R, | D
My | → X | | | · /71/11/17 | ,,,,,,, | // | | ->- | P | | | | | | POSITIV | E SIGN | CONVE | NTION | | FIGURE 24.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load VII, 1/6 uniformly varying load. | | | |] | | 1 | M _x | | | | | N | | | | |-----------------|--|-------------------------------|---------------|----------------|---------------|--|--------------|--------------------------|----------|--------------|---------------|--|----------------------|---------------| | <u></u> | y/b | R _X X/O | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1.0 | +5.9610 | 0 | | + 0571 | | | | 0 | | | | +1.0000 | | | <u>~</u> | 0.8 | -2.8341 | 0 | | +.0564 | | | | 0 | + | + | | +.0679 | | | | 0.4 | 0022 | 0 | | +.0124 | + | | - | 0 | 0004 | 0008 | 0010 | 0012 | 0012 | | | 0.2 | +.0016 | ő | | +.0003 | | | | 0 | 0004 | - 0008 | 0011 | 0013 | 0014 | | %
9% | 0 | +.0030 | 0 | 0000 | + | | | + | 1 | - 0001 | 0002 | 0002 | 0002 | 0003 | | | | R _X R _Y | +.0030 | 0011 | 0020 | + | 0033 | + | <u> </u> | 1 | | | | | | | 1.0 | +10.3797 | 0 | +.0311 | | 1188 | | | 0 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | | \\\\7 | 0.8 | -4.3042 | 0 | | +.0631 | | 4 | | 0 | +.0917 | +.1644 | +.2161 | +.2470 | +.2572 | | " | 0.6 | 7213
1390 | 0 | | +.0382 | | | | 0 | | | | +.0423 | | | ما | 0.4 | +.0220 | 0 | | +.0046 | | | | 0 | 0014 | | +.0018
0036 | +.0022 | | | 9/p | 0 | +.0956 | 0 | 0010 | | | | 1 | 0 | 0051 | | 0134 | 0158 | 0166 | | | | R _X R _Y | +.0956 | 0413 | + | | + | | <u> </u> | 1 | | | | 70.00 | | | 1.0 | +13.4266 | 0 | 0276 | 1306 | 1774 | 1976 | 2033 | 0 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.00.00 | | 3/8 | 0.8 | -4.9000 | | +.0421 | | · | + | +.0044 | 0 | +.1615 | +.2810 | +.3607 | +.4058 | +.4204 | | 1 | 0.6 | -1.1940 | 0 | + | +.0409 | + | | · | 0 | 1 | +.0839 | | +.1363 | | | "_ | 0.4 | 3728 | 0 | +.0134 | + | | | +.0383 | 0 | + | | | +.0368 | | | 9% | 0.2 | +.0278 | 0 | +.0038
0031 | +.0071 | | | | 0 | | 0022 | 0029 | 0032 | 0033 | | | - | R. R. | +.1943 | 1076 | | - | | | <u> </u> | 0155 | 0294 | 0404 | 0474 | 0499 | | | 1.0 | +15.7047 | 0 | 0725 | | | | | 0 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | | ~ | 0.8 | -5.1848 | 0 | +.0310 | +.0035 | | + | + | 0 | | | | +.5207 | | | 1/2 | 0.6 | - I. 4580 | 0 | +.0221 | +.0284 | +.0257 | +.0211 | + 0192 | 0 | +.0786 | +.1492 | +.2033 | +.2367 | +.2479 | | п | 0.4 | 5749 | 0 | | +.0215 | | | +.0274 | 0 | +.0294 | +.0567 | +.0790 | +.0935 | +.0985 | | 0/p | 0.2 | 0597 | 0 | + | +.0069 | | | +.0096 | 0 | + | +.0096 | | +.0166 | | | " | 0 | +.1393
Rx Ry | 0
+.1393 | 0036 | 0067
2596 | 0090 | 0105 | 0110 | 0 | 0178 | 0334 | 0452 | 0525 | 0550 | | - | 1.0 | +19.0782 | 0 | 1285 | | | | 4200
2451 | 0 | 1.0000 | +1,0000 | +1 0000 | +1.0000 | +1 0000 | | _4 | 0.8 | -5.5535 | <u> </u> | +.0089 | | | | 1181 | 0 | - | - | | +.6621 | | | 3/4 | 0.6 | -1.7231 | 0 | | +.0054 | | | 0337 | 0 | + | | | +.4059 | $\overline{}$ | | 11 | 0.4 | 9245 | 0 | +.0142 | +.0173 | +.0136 | +.0090 | +.0071 | 0 | +.0775 | +.1480 | +.2027 | +.2368 | +.2483 | | ٥/p | 0.2 | 4547 | 0 | +.0090 | +.0147 | +.0173 | +.0182 | +.0184 | 0 | +.0410 | +.0794 | +.1109 | +.1315 | +.1386 | | 0 | 0 | 1466 | 0 | | +.0065 | | +.0128 | + 0138 | 0 | +.0150 | +.0323 | +.0503 | +.0640 | +.0691 | | <u> </u> | | Rz Ry | 1466 | 1354 | 2227 | _ | 2627 | 2615 | | | | | | | | | 0.8 | +21.4049
-5.9317 | 0 | 1478
0013 | 2002
0588 | 2064
0909 | 2054
1048 | 2046
1086 | 0 | | | | +1.0000 | | | - | 0.6 | -1.8811 | 0 | | | 0159 | 0279 | 0317 | 0 | | | | +.5414 | | | "_ | 0.4 | -1.2060 | 0 | | | +.0241 | | | 0 | | +.2537 | | + 3922 | | | ۵/ _b | 0.2 | 8257 | 0 | +.0195 | +.0326 | +.0407 |
+.0455 | +.0471 | 0 | | +.1832 | + | +.2994 | +.3150 | | | 0 | 3387 | 0 | +.0138 | +.0285 | +.0420 | +.0516 | +.0550 | 0 | +.0690 | +.1423 | +.2101 | + . 2580 | +.2751 | | | | R _X R _Y | 3387 | 1330 | ~.1655 | 1250 | 0735 | 0517 | | | | | | | | ۱ ا | 1.0 | +24.0577 | 0 | 1416 | 1333 | 0989 | 0729 | 0635 | | | | | +1.0000 | | | 3/2 | 0.8 | -6.7445
-1.9745 | 0 | 0047 | +.0275 | | 0139 | 0083 | _ 0 | | | | +.8580 -
+.7370 - | | | " | 0.4 | -1.4705 | 0 | | +.0577 | | | | 0 | | $\overline{}$ | | + .6479 | | | g/b | 0.2 | -1.1741 | 0. | | $\overline{}$ | +.0915 | | | | | + 3789 | | +.5976 | | | 0 | 0 | 4225 | 0 | | +.0692 | | | | | + | | | +.5917 | 6242 | | | | Ry | 4225 | 1575 | 1016 | +.0130 | +.0925 | +.1189 | | | | | |] | | <a> | 0- | | ' | | Y M | | -, | | | | | Ť | | * | | Free | nged | | • | | | | | oefficient
oefficient | | | * | R. R. | D D | → x | | annn i | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <u>+</u> | x | | × | | | | | | w POSITIV | VE SIGN | CONVE | NTION | FIGURE 25.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coefficients, Load VIII, moment at free edge. | | | | | | N | l'x | · | | 1 | | | A _V | ***** | | | |--|--|-------------------------------|--------------|--------------|---|--------------|---------|--------------------------|----------|--------------|-------------|--|---------------|----------------------|--| | 1 | У/ь | R _X X/o | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | 1 0 0 | | , | 1 0 0 | I | | | <u> </u> | 1.0 | +1.2357 | 0 | | | | | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1 | 0.8 | +.0124 | 0 | 0203
0033 | | | 0514 | 0534 | 0 | 0 | 0 | 0 | 0 | 0 | | | >€ | 0.6 | 0039 | Ö | 0005 | | 0084
0014 | 0099 | 0103 | 0 | | +.0021 | | +.0034 | + - | | | l n | 0.4 | 0012 | 0 | 0001 | 0002 | | 0017 | 0017 | 0 | | | | +.0008 | | | | | 0.2 | 0002 | | 0000 | <u>+</u> | 0000 | 0003 | 0003 | 0 | + .0001 | +.0001 | | +.0002 | | | | % | 0 | 0002 | 0 | +.0000 | 1 | +.0000 | +.0000 | +.0000 | 0 | +.0000 | +.0000 | | +.0000 | | | | | <u> </u> | R _x R _y | 0002 | +.0001 | +.0001 | +.0001 | +.0002 | +.0002 | ├ | 1+.0000 | +.0000 | T.0000 | +.0000 | [+ .0000 | | | | 1.0 | +2.3808 | 0 | 0534 | | 1127 | 1257 | 1300 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0.8 | +.0825 | 0 | 0186 | | 0465 | 0538 | 0563 | Ö | | +.0091 | | +.0140 | | | | 74 | 0.6 | 0040 | 0 | 0069 | †—— | 0178 | - 0208 | 0219 | 0 | | +.0054 | | + 0086 | | | | 0 | 0.4 | 0117 | 0 | 0024 | 0045 | 0062 | 0073 | 0077 | 0 | | +.0025 | | | +.0042 | | | 9% | 0.2 | 0149 | 0 | 0006 | 0011 | 0015 | 0017 | 0018 | 0 | | +.0013 | | +.0021 | | | | °` | 0 | - 0250 | 0 | +.0002 | +.0005 | +.0006 | +.0008 | + 0008 | 0 | +.0012 | +.0023 | +.0032 | +.0038 | | | | L | | R _X R _Y | 0250 | +.0089 | +.0168 | +.0228 | +.0273 | +.0284 | | | | | | | | | | 1.0 | +3.4577 | 0 | 0873 | 1422 | 1761 | 1947 | 2007 | 0 | 0 | 0 | 0 | . 0 | 0 | | | 3/8 | 0.8 | +.1637 | 0 | 0401 | 0730 | 0966 | 1107 | - 1154 | 0 | +.0087 | +.0153 | +.0198 | +.0223 | +.0231 | | | 1 | 0.6 | +.0175 | 0 | 0192 | 0361 | 0491 | 0572 | 0599 | 0 | +.0069 | +.0129 | +.0174 | +.0202 | +.0212 | | | " | 0.4 | 0344 | 0 | 0082 | 0156 | 0214 | 0251 | 0263 | 0 | +.0048 | +.0092 | +.0126 | +.0147 | +.0155 | | | % | 0.2 | 0967 | 0 | 0018 | 0034 | 0046 | 0054 | 0057 | 0 | +.0047 | +.0090 | +.0124 | +.0145 | +.0153 | | | • | 0 | 1369 | 0 | +.0019 | +.0037 | +.0051 | +.0060 | +.0063 | 0 | +.0097 | +.0185 | +.0254 | +.0299 | +.0314 | | | | | Rx Ry | 1369 | | | +.1295 | +.1520 | +.1599 | | | | | | | | | 1 | 1.0 | +4.5104 | 0 | 1183 | | 2294 | 2519 | 2590 | 0 | 0 | 0 | 0 | 0 | 0 | | | 7 | 0.8 +.2138 006141094142316121674 0 +.0117 +.0199 +.0248 +.0274 + 0.6 +.0222 003220596080009240965 0 +.0115 +.0212 +.0282 +.0323 + 11 0.40945 001410265036004190439 0 +.0113 +.0213 +.0291 +.0339 + | | | | | | | | | | | | | | | | 1 | 11 0.40945 001410265036004190439 0 +.0113 +.0213 +.0291 +.03 | | | | | | | | | | | | | | | | 1 1 | 0.22623 000180033004500520054 0 +.0152 +.0288 +.0396 +.0464 | | | | | | | | | | | | | | | | % | 0.22623 000180033004500520054 0 +.0152 +.0288 +.0396 +.0464 +.
02967 0 +.0059 +.0112 +.0154 +.0181 +.0190 0 +.0294 +.0560 +.0769 +.0904 +. | | | | | | | | | | | | | | | | " | 02967 0 +.0059 +.0112 +.0154 +.0181 +.0190 0 +.0294 +.0560 +.0769 +.0904 + | | | | | | | | | | | | | | | | | R ₈ R ₇ 2967 +.1156 +.2193 +.3010 +.3530 +.3709 | | | | | | | | | | | | | | | | ļ | R ₈ R _y 2967 +.1156 +.2193 +.3010 +.3530 +.3709 | | | | | | | | | | | | | | | | % | | | | | | | | | | | | | | | | | 1 1 | 0.60730 004830853109312231264 0 +.0259 +.0464 +.0605 +.0687 +.0 | | | | | | | | | | | | | | | | 1 1 | 0.60730 004830853109312231264 0 +.0259 +.0464 +.0605 +.0687 +.07
0.43103 001850332042904810497 0 +.0353 +.0661 +.0894 +.1039 +.10 | | | | | | | | | | | | | | | | 8 | 0 | 5452 | 0 | +.0181 | | | | +.0575 | 0 | | | | † | + 2876 | | | 1 1 | | R _x Ry | | +.2510 | | +.6371 | +.7396 | | | 7.0000 | | *,2042 | | | | | | 1.0 | +7.7716 | 0 | 1796 | 2494 | 2779 | 2885 | 2911 | 0 | 0 | 0 | 0 1 | 0 [| - | | | | 0.8 | +.1043 | 0 | 1042 | 1602 | 1855 | 1952 | 1976 | 0 | _ | +.0459 | | +.0609 | | | | l l | 0.6 | 2131 | 0 | 0532 | 0859 | 1012 | 1068 | 1081 | 0 | +.0468 | +.0830 | +.1080 | +.1227 | +.1276 | | | "_ | 0.4 | 5179 | 0 | 0161 | 0249 | 0271 | 0264 | 0258 | 0 | +.0686 | +.1272 | +.1711 | +.1981 | +.2072 | | | 9/p | 0.2 | 9412 | 0 | +.0120 | +.0240 | +.0348 | +.0421 | +.0447 | 0 | +.1020 | +.1917 | +.2604 | +.3032 | +.3178 | | | | 0 | 6348 | 0 | +.0314 | +.0588 | +.0796 | +.0923 | +.0966 | 0 | +.1569 | +.2940 | +.3978 | +.4617 | +.4831 | | | | | RX | 6348 | +.3528 | +.6445 | +.8488 | +.9658 | +1.0036 | | | | | | | | | . I | 51.0 | +9.0313 | . 0 | 1917 | - | | 1933 | 1866 | 0 | 0 | 0 | 0] | 0 | 0 | | | 2% | 0.8 | 0267 | 0 | | 1390 | | | | 0 | +.0501 | +.0796 | +.0992 | +.1112 | +.1152 | | | | 0.6 | 3777 | 0 | | 0645 | | | | 0 | | | | +.2305 | | | | ا يٰ ا | 0.4 | 7215 | 0 | | +.0009 | | | | .0 | | | | +.3658 | | | | 😽 | 0.2 | -1.1699 | 0 | | +.0562 | | | | 0 | | | | +.5265 | | | | | 0 | 5965 | 0 | +.0543 | | +.1280 | | | 0 | +.2714 | +.4904 | +.6400 | +.7243 | +.7513 | | | $ldsymbol{\sqcup}$ | | Ry | 5965 | +.5000 | +.8389 | +1.0190 | +1.0977 | +1.1190 | | | | | | | | | Free H | inged | ,,,,, | | F | | | | pefficient
pefficient | | | M : | R. Ry | D
My | —→ X | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | mm | ,,,, ! | r_x | | | | | | | | W
POSITI | VE SIG | N CONVI | ENTION | | Figure 26.—Plate fixed along one edge—Hinged along two opposite edges, moment and reaction coafficients, Load IX, line load at free edge. | 0.6 + .1253 + .0078 + .0050 + .0028 + .0012 + .0003 | | | | | | | Mx | | | T | | N | A _y | | | |--|--------------|--------------|--|--------------|--------------|--------------|---------|--|--|--------------|---------|-------------------|----------------|--------------|--| | 1.0 | | y/b | Rx X/o | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | 0.8 | | 1.0 | +.1216 | + .0077 | + .0049 | +.0026 | +.0012 | + .000 | 3 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0.6 | 8 | 0.8 | +.1267 | + .0079 | +.0050 | + .0028 | + .0013 | + .0003 | 3 0 | + .0016 | +.0010 | + .0006 | + .0003 | +.0001 | +.0000 | | 0.2 | | | | ł | | + | | + .000 | 3 0 | +.0016 | + .0010 | + .0006 | +.0002 | +.0001 | 0000 | | 0004 | 1 | | + | | | | + | | | + .0015 | + .0010 | + .0005 | + .0002 | 0000 | 0001 | | 1.0 | \ <u>^</u> | | | | | | + — | + | + | _ | + | | | 0003 | 0004 | | 1.0 +2285 +0297 +0192 +0108 +0004 +0011 0 0 0 0 0 0 0 0 0 | " | | - | | | + | - | + | + | | +.0007 | + .0023 | +.0043 | +.0064 | +.0083 | | 0.8 | | 1 1 0 | | | | + | + | | | | | | | | | | 0.6 +.2539 +.030 | | | + | | | + | + | - | | + | + | | · | | | | 11 | 74 | <u> </u> | | | | | + | | ļ | ·t | + | h | | | | | 0.2 + 1.832 + 0.172 + .0092 + 0.040 + .00100003 | 1 11 | 0.4 | | - | | + | | + | + | | | | | | | | 1.0 | | 0.2 | | | | - | + | - | + | t | | | | | | | 1.0 | 0 | 0 | 0866 | 0 | +.0006 |
+.0017 | | | + | t | t | | | | | | 0.8 +.4129 +.0664 +.0399 +.0206 +.0078 +.0010 0 +.0133 +.0076 +.0031000200250037 0.6 +.3798 +.0604 +.0356 +.0176 +.0060 +.0002 0 +.0121 +.0067 +.0020001800450060 0.4 +.3439 +.0479 +.0265 +.0120 +.00320007 0 +.0096 +.00450000003600620078 0.2 +.1762 +.0232 +.0119 +.0051 +.0016 +.0001 0 +.0046 +.0020 +.0003000700110012 0.00155 0 +.0011 +.0034 +.0061 +.0092 0 0 +.0046 +.0020 +.0033000700110012 0.8 +.5570 +.1052 +.0059 +.0051 +.0013 +.0056 +.0099 0 0 +.0055 +.0168 +.0307 +.0458 +.0589 0.8 +.5570 +.1052 +.0059 +.0334 +.00610017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Ĺ | | R _X R _y | 0866 | 0058 | + .0998 | + .2009 | +.3764 | + .5716 | i – | | | | .0200 | 1.0004 | | 0.8 | | 1.0 | +.3267 | +.0642 | +.0407 | +.0218 | +.0085 | +.0012 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0.4 +.3439 +.0479 +.0265 +.0120 +.00320007 | | 0.8 | +.4129 | +.0664 | +.0399 | +.0206 | +.0078 | +.0010 | 0 | +.0133 | +.0076 | +.0031 | 0002 | 0025 | | | 0.2 +.1762 +.0232 +.0119 +.0051 +.0016 +.0001 0 +.0046 +.0020 +.0003000700110012 00155 0 +.0011 +.0034 +.0061 +.0092 0 0 +.0055 +.0168 +.0307 +.0458 +.0589 R ₁ R ₂ 01550080 +.1135 +.2213 +.4296 +.6709 1.0 +.4597 +.1074 +.0638 +.0304 +.00650017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ω, | | _ | | | | +.0060 | +.0002 | 0 | +.0121 | +.0067 | +.0020 | 0018 | 0045 | 0060 | | 0 -0.0155 | 11 | | | | | | | | 0 | +.0096 | +.0045 | 0000 | 0036 | 0062 | 0078 | | R _x R _y 0155 0080 +.1135 +.2213 +.4296 +.6709 0016 0017 0 0 0 0 0 0 0 0 0 | Q a | | | | | · | | | | +.0046 | +.0020 | +.0003 | 0007 | 1100 | 0012 | | 1.0 | 0, | - | | | | | | | | 0 | +.0055 | +.0168 | + .0307 | + .0458 | + .0589 | | 0.8 +.5570 +.1052 +.0592 +.0275 +.00790010 0 +.0210 +.0108 +.0028003200760105 | | | | | | | | | | | | | | | | | 0.6 | | | | | | | | - | | | | | | | | | 0.4 | 1/2 | | | | | | | | | | | + | | | | | 0.2 +.1422 +.0261 +.0134 +.0062 +.0031 +.0019 0 +.0052 +.0033 +.0035 +.0051 +.0071 +.0088 00401 0 +.0019 +.0059 +.0108 +.0163 0 0 +.0096 +.0296 +.0296 +.0541 +.0813 +.1051 Rx Ry0401 +.0011 +.1576 +.3024 +.5696 +.8739 1.0 +.8290 +.1977 +.0952 +.029800590162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | 00401 0 +.0019 +.0059 +.0108 +.0163 0 0 +.0096 +.0296 +.0541 +.0813 +.1051 R_X R_Y 0401 +.0011 +.1576 +.3024 +.5696 +.8739 | | 0.2 | +.1422 | | | | | · | | | | | + | | | | Rx Ry - 0.401 +.0011 +.1576 +.3024 +.5696 +.8739 | _ | 0 | 0401 | 0 | +.0019 | | | | i | | | | | | | | 0.8 +.7827 +.1726 +.0817 +.026100320110 0 +.0345 +.01440001016601860257 0.6 +.5677 +.1318 +.0621 +.019400230079 0 +.0264 +.01020034013902180279 0.4 +.3914 +.0826 +.0377 +.0120 +.00010026 0 +.0165 +.00610005004200630077 0.2 +.0741 +.0282 +.0144 +.0077 +.0072 +.0081 0 +.0056 +.0084 +.0176 +.0296 +.0411 +.0501 00698 0 +.0041 +.0125 +.0221 +.0326 0 0 +.0026 +.0623 +.1104 +.1630 +.2076 R _x R _y 0698 +.0333 +.2595 +.4574 +.7928 +1.1288 1.0 +1.1828 +.2949 +.1046 +.014602680324 0 0 0 0 0 0 0 0 0 0.8 +.9335 +.2421 +.0873 +.012901990227 0 +.0484 +.01590023014102270324 0.6 +.5948 +.1724 +.0643 +.009701320141 0 +.0345 +.01190032013201990268 0.4 +.3699 +.1033 +.0384 +.006900320023 0 +.0207 +.0090 +.0069 +.0097 +.0129 +.0146 0.2 +.0548 +.0362 +.0152 +.0090 +.0119 +.0159 0 +.0072 +.0152 +.0384 +.0643 +.0873 +.1046 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0072 +.0152 +.0384 +.0643 +.0873 +.1046 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0362 +.1033 +.1724 +.2421 +.2949 | | | R _X R _Y | 0401 | +.0011 | +.1576 | +. 3024 | +.5696 | +.8739 | | | | | | | | 0.6 +.5677 +.1318 +.0621 +.019400230079 0 +.0264 +.01020034013902180279 0.4 +.3914 +.0826 +.0377 +.0120 +.00010026 0 +.0165 +.00610005004200630077 0.2 +.0741 +.0282 +.0144 +.0077 +.0072 +.0081 0 +.0056 +.0084 +.0176 +.0296 +.0411 +.0501 00698 0 +.0041 +.0125 +.0221 +.0326 0 0 +.0206 +.0623 +.1104 +.1630 +.2076 R _X R _Y 0698 +.0333 +.2595 +.4574 +.7928 +1.1288 1.0 +1.1828 +.2949 +.1046 +.014602680324 0 0 0 0 0 0 0 0 0 0.8 +.9335 +.2421 +.0873 +.012901990227 0 +.0484 +.01590023014102270324 0.6 +.5948 +.1724 +.0643 +.009701320141 0 +.0345 +.01190032013201990268 0.4 +.3699 +.1033 +.0384 +.006900320023 0 +.0207 +.0090 +.0069 +.0097 +.0129 +.0146 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0072 +.0152 +.0384 +.0643 +.0873 +.1046 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0362 +.1033 +.1724 +.2421 +.2949 | | 1.0 | + . 8290 | 1977 | +.0952 | +.0298 | 0059 | 0162 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 11 | , 4 | 0.8 | +.7827 | +.1726 | +.0817 | +.0261 | 0032 | 0110 | 0 | +.0345 | +.0144 | 0001 | 0106 | | | | 0.2 +.0741 +.0282 +.0144 +.0077 +.0072 +.0081 0 +.0056 +.0084 +.0176 +.0296 +.0411 +.0501 00698 0 +.0041 +.0125 +.0221 +.0326 0 0 +.0206 +.0623 +.1104 +.1630 +.2076 | 3/ | 0.6 | +.5677 | +.1318 | +.0621 | +.0194 | 0023 | 0079 | 0 | +.0264 | +.0102 | 0034 | 0139 | 0218 | 0279 | | 00698 0 +.0041 +.0125 +.0221 +.0326 0 0 +.0206 +.0623 +.1104 +.1630 +.2076 R _X R _Y 0698 +.0333 +.2595 +.4574 +.7928 +1.1288 1.0 +1.1828 +.2949 +.1046 +.014602680324 0 0 0 0 0 0 0 0 0 0 0.8 +.9335 +.2421 +.0873 +.012901990227 0 +.0484 +.01590023014102270324 0.6 +.5948 +.1724 +.0643 +.009701320141 0 +.0345 +.01190032013201990268 0.4 +.3699 +.1033 +.0384 +.006900320023 0 +.0207 +.0090 +.069 +.0097 +.0129 +.0146 0.2 +.0548 +.0362 +.0152 +.0090 +.0119 +.0159 0 +.0072 +.0152 +.0384 +.0643 +.0873 +.1045 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0362 +.1033 +.1724 +.2421 +.2949 | 11 | | | | | +.0120 | + .0001 | 0026 | 0 | +.0165 | +.0061 | 0005 | 0042 | - 0063 | 0077 | | 1.0 | | | | + | | | | | 0 | +.0056 | +.0084 | + .0176 | + .0296 | +.0411 | +.0501 | | 1.0 +1.1828 +.2949 +.1046 +.014602680324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ָ ס | | 1 | | | | | | | 0 | +.0206 | + .0623 | + .1104 | +.1630 | +.2076 | | 0.8 +.9335 +.2421 +.0873 +.012901990227 0 +.0484 +.01590023014102270324 0.6 +.5948 +.1724 +.0643 +.009701320141 0 +.0345 +.01190032013201990268 0.4 +.3699 +.1033 +.0384 +.006900320023 0 +.0207 +.0090 +.0069 +.0097 +.0129 +.0146 0.2 +.0548 +.0362 +.0152 +.0090 +.0119 +.0159 0 +.0072 +.0152 +.0384 +.0643 +.0873 +.1046 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0362 +.1033 +.1724 +.2421 +.2949 | | | | + | | | | | | | | - г | | | | | 0.6 + .5948 + .1724 + .0643 + .009701320141 0 + .0345 + .01190032013201990268 0.4 + .3699 + .1033 + .0384 + .006900320023 0 + .0207 + .0207 + .0090 + .0069 + .0097 + .0129 + .0146 0.2 + .0548 + .0362 + .0152 + .0090 + .0119 + .0159 0 + .0072 + .0152 + .0384 + .0643 + .0873 + .1046 00887 0 + .0072 + .0207 + .0345 + .0484 0 0 + .0362 + .1033 + .1724 + .2421 + .2949 | | | | | | | | | | + | | | | | | | 0.4 + .3699 + .1033 + .0384 + .006900320023 0 + .0207 + .0090 + .0069 + .0097 + .0129 + .0146 0.2 + .0548 + .0362 + .0152 + .0090 + .0119 + .0159 0 + .0072 + .0152 + .0384 + .0643 + .0873 + .1046 00887 0 + .0072 + .0207 + .0345 + .0484 0 0 + .0362 + .1033 + .1724 + .2421 + .2949 | └ ~ ├ | | | | | | | | | | | | | | | | 0.2 +.0548 +.0362 +.0152 +.0090 +.0119 +.0159 0 +.0072 +.0152 +.0384 +.0643 +.0643 +.0873 +.1046 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0362 +.1033 +.1724 +.2421 +.2949 Ry0887 +.0548 +.3699 +.5948 +.9335 +1.1828 | | | - | | | | | | | | | | | + | | | 00887 0 +.0072 +.0207 +.0345 +.0484 0 0 +.0362 +.1033 +.1724 +.2421 +.2949
Ry0887 +.0548 +.3699 +.5948 +.9335 +1.1828 | امح | | | | | | | | | | | | | | | | Ry0887 + .0548 + .3699 + .5948 + .9335 +1.1828 | ° | | | | + | | | | | | + | \longrightarrow | | | | | Y | ŀ | | | - | | | | | | | .0302 | . 1033 | | + | 2 343 | | | Y | | | | | | | | | | - | | | | | Figure 27.—Plate fixed along two adjacent edges, moment and reaction coefficients, Load I, uniform load. | | | | | | ٨ | A x | | | | | N | l _y | | | | |-----------------|---|-------------------------------|--------|---------------------------------------|---------|---------|---------|----------|--------------|---------|-----------|-------------------------------|----------|---------|--| | | y/b | R _X X/o | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | 1.0 | 0014 | +.0002 | +.0002 | +.0002 | +.0001 | +.0001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 8/ | 0.8 | +.0075 | +.0011 | +.0008 | +.0006 | +.0004 | +.0002 | 0 | + 0002 | +.0002 | + .0002 | + 0002 | +.0003 | +.0003 | | | -` | 0.6 | +.0970 | +.0056 | +.0035 | +.0019 | +.0008 | +.0001 | 0 | +.0011 | +.0007 | + .0003 | +.0000 | 0001 | 0002 | | | j o . | 0.4 | +.1258 | +.0074 | +.0046 | +.0025 | +.0010 | +.0002 | 0 | +.0015 | + .0009 | +.0004 | +.0001 | 0002 | 0003 | | | %
% | 0.2 | +.1209 | +.0067 | +.0040 | | + .0008 | +.0001 | 0 | | + 0008 | + .0003 | 0001 | | 0005 | | | ° | 0 . | +.0046 | 0 | · · · · · · · · · · · · · · · · · · · | + .0005 | | + .0013 | 0 | 0 | +.0007 | + .0023 | +.0043 | [+.0064 | +.0083 | | | — | 1.0 | 0187 | +.0046 | +.0031 | +.0505 | + 0020 | +.2023 | T | 0. | 0 | 0 | 0 | | | | | | 0.8 | +.0315 | ł | 1 | +.0041 | + .0023 | + .0009 | 0 | + 00 6 | | +.0014 | _ | +.0016 | + .0018 | | | 74 | 0.6 | + 1899 | +.0195 | | | + .0019 | +.0000 | 0 | | +.0021 | + 6005 | | 0017 | 0022 | | | ,, | 0.4 | + 2492 | + 0238 | | +.0060 | +.0015 | 0005 | 0 | · . | +.0023 | +.0001 | ł - | 0031 | 0040 | | | | 0.2 | +.1869 | +.0165 | | +.0033 | +.0005 | 0006 | 0 | | +.0013 | 0005 | | 0030 | 0037 | | | ۵% | 0 | 0822 | 0 | +.0006 | +.0017 | +.0031 | + 0045 | ō | ا أ | + 0028 | | | +.0226 | • • | | | | | R _X R _Y | 0822 | 0012 | +.1050 | +.2030 | +.3681 | +.5432 | | <u></u> | | | • | | | | | 1.0 | 0462 | +.0102 | +.0106 | +.0085 | +.0055 | +.0026 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 8 | 0.8 | +.0819 | +.0213 | +.0149 | +.0091 | +.0046 | +.0015 | 0 | +.0043 | + 0033 | +.0025 | +.0019 | + 0016 | +.0017 | | | 3, | -0.6 | + .2733 |
+.0361 | | +.0083 | +.0017 | 0010 | 0 | + .0072 | + 0030 | 0008 | 0039 | 0061 | - 0076 | | | " | 0.4 | +.3352 | +.0384 | | + .0063 | - 0003 | 0022 | 0 | | +.0024 | 0025 | | 0096 | 0118 | | | 9 | 0.2 | +.1928 | +.0212 | | +.0027 | 0003 | - 0010 | 0 | + | | | 0030 | | - 0049 | | | 0 | 00069 0 +.0011 +.0031 +.0055 +.0079 0 0 +.0055 +.0157 +.0274 +.0395 +.04 R _x R _y 0069 +.0125 +.1333 +.2285 +.3963 +.5629 1, 00487 +.0223 +.0201 +.0137 +.0074 +.0028 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | \vdash | 1. 00487 + .0223 + .0201 + .0137 + .0074 + .0028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | 1. b0487 +.0223 +.0201 +.0137 +.0074 +.0028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | /2 | · | | · · · | | | | | | | | | | | - 0154 | | | ١., | 0.6 + .3336 + .0502 + .0244 + .0086 + .00010026 0 + .0100 + .002900360089012701 | | | | | | | | | | | | | | | | مّ ا | 0.6 + .3336 + .0502 + .0244 + .0086 + .00010026 0 + .0100 + .0029003600890127015 0.4 + .3772 + .0476 + .0198 + .004600250038 0 + .0095 + .0013006101190161019 | | | | | | | | | | | | | | | | 0 | 0 | 0250 | 0 | +.0019 | +.0053 | +.0089 | +.0125 | 0 | 0 | +.0096 | +.0263 | +.0443 | +.0625 | + 0775 | | | | | R _X | 0250 | +.0438 | + .1939 | +.3071 | +.4893 | + .6544 | | | | | | | | | • | 1.0 | +.0368 | +.0524 | +.0341 | +.0153 | +.0028 | 0022 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 3/4 | 0.8 | +.2262 | +.0612 | +.0319 | +.0118 | +.0005 | 0029 | 0 | +.0122 | +.0059 | + .0004 | 0042 | 0078 | 0106 | | | ω, | 0.6 | +.3844 | | | + 0046 | 0047 | ~.0059 | 0 | | +.0006 | 0102 | 0182 | 0238 | 0279 | | | " | 0.4 | +.3913 | +.0541 | +.0165 | 0002 | - 0057 | 0052 | 0 | +.0108 | 0019 | - 0117 | 0180 | 0217 | 0244 | | | q/ ₀ | 0.2 | +.1509 | + 0229 | | +.0006 | +.0006 | +.0021 | 0 | + .0046 | +.0018 | +.0034 | | +.0119 | +.0154 | | | | | R _X | - | | | +.4261 | +.6038 | +.7410 | | 1.0200 | 1.0434 | 7.0773 | 1.1043 | 7.1202 | | | | 1.0 | +.1522 | + 0776 | | +.0086 | 0061 | 0088 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0.8 | +.2785 | +.0772 | +.0318 | +.0051 | 0067 | 0076 | 0 | +.0154 | +.0058 | 0018 | 0075 | 0117 | 0156 | | | - | 0.6 | +.3929 | +.0725 | +.0216 | 0016 | 0096 | 0085 | 0 | +.0145 | 0022 | 0145 | 0224 | 0274 | 0316 | | | ا ا | 0.4 | +.3794 | +.0542 | +.0113 | 0042 | 0074 | 0051 | 0 | | 0046 | | | 0182 | 0193 | | | ۵/p | 0.2 | +.1311 | +.0216 | +.0042 | +.0007 | +.0027 | +.0054 | 0 | +.0043 | +.0036 | | | +.0292 | +.0360 | | | | 0 | 0499 | 0 | +.0065 | +.0145 | +.0213 | +.0275 | 0 | 0 | +.0323 | +.0725 | +.1064 | +.1375 | +.1605 | | | L _ | | , EX | 0499 | + 1916 | +.3934 | +.5067 | +.6597 | + . 7476 | L | | | | | | | | | Free | Q | X Y | ▼ p ->- | | | = (Coef | | | | W POSITIV | R _x R _y | M, conve | X | | Figure 28.—Plate fixed along two adjacent edges, moment and reaction coefficients, Load II, 2/3 uniform load. **RESULTS** | 1.0 -0.001 +.0000 +.0000 +.0000 +.0000 +.0000 0 0 0 0 0 0 0 0 | | | | | | | M _x | | • | 1 | | 1 | M _y | | | | |---|---|--|-------------------------------|--|-------------|---------|----------------|---------|--------|--------|---------|---------|--|----------|---------|--| | 1.0 | | У/ь | R _X X/a | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | т—— | - | 0.8 | 1.0 | | | 0.60001 +.0002 .0002 .0002 .0001 .0 | | 1.0 | 0001 | +.0000 | + .0000 | +.0000 | + .0000 | +.0000 | 0 | 0 | 0 | 0 | | 0 | 0 | | | 0.8 | | 0.8 | 0002 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | +.0000 | +.0000 | +.0000 | | <u> </u> | +.0000 | | | 0.4 +.0288 +.0021 +.0014 +.0008 +.0004 +.0001 0 +.0011 +.0008 +.0001 +.0001 +.0001 | - | 0.6 | 0001 | +.0002 | + .0002 | +.0002 | +.0001 | +.0001 | 0 | +.0000 | +.0001 | +.0001 | ├ | | +.0001 | | | 0.2 + 1.089 + .0097 + .0032 + .0013 + .00040001 0 + .0011 + .0006 + .000100040007 + .0005 | - 11 | 0.4 | +.0288 | +.0021 | +.0014 | +.0008 | +.0004 | +.0001 | 0 | +.0004 | +.0003 | +.0002 | +.0001 | +.0001 | +.0001 | | | 0 + .0441 0 + .0001 + .0003 + .0006 + .0009 0 0 + .0006 + .0017 + .0030 + .0045 | ما | 0.2 | +.1089 | +.0057 | +.0032 | +.0014 | +.0004 | 0001 | 0 | +.0011 | +.0006 | +.0001 | 0004 | 0007 | 0009 | | | 1.0 -0.034 +.0.002 +.0.003 +.0.003 +.0.003 +.0.0002 0 0 0 0 0 0 0 0 0 | 6 | 0 | +.0441 | 0 | +.0001 | +.0003 | +.0006 | +.0009 | 0 | 0 | +.0006 | +.0017 | +.0030 | +.0045 | +.0057 | | | 0.80003 +.0007 +.0007 +.0006 +.0004 +.0002 | | | R _X R _y | +.0441 | +.0021 | +.0412 | +.0763 | +.1395 | +.2216 | | | | | | | | | 0.6 +.0049 +.0023 +.0014 +.0013 +.0008 +.0003 | | 1.0 | 0034 | +.0002 | +.0003 | + .0003 | + .0003 | +.0002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 10 | 4 | 0.8 | 0003 | +.0007 | +.0007 | +.0006 | +.0004 | +.0002 | 0 | +.0001 | +.0002 | + .0002 | + .0003 | +.0004 | +.0004 | | | 0.2 + .1620 + .0113 + .0046 + .000900080011 0 + .0023 + .0003001500300041 0 + .0298 0 + .0004 + .0012 + .0019 + .0027 0 0 0 + .0021 + .0058 + .0096 + .0135 R, R, Y + .0298 + .0247 + .0989 + .1533 + .2384 + .3108 000120 + .0010 + .0014 + .0013 + .0010 + .0005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | - | 0.6 | +.0049 | +.0023 | +.0019 | +.0013 | +.0008 | +.0003 | 0 | +.0005 | +.0005 | +.0005 | +.0006 | +.0006 | +.0007 | | | 0 + .0298 | п | 0.4 | +.0655 | +.0071 | +.0041 | +.0019 | +.0005 | 0001 | 0 | +.0014 | + .0008 | +.0002 | 0002 | 0006 | 0009 | | | 1.0 | م ا | 0.2 | +.1620 | +.0113 | +.0046 | +.0009 | 0008 | 0011 | 0 | +.0023 | + .0003 | 0015 | 0030 | 0041 | 0050 | | | 1.0 0120 +.0010 +.0014 +.0013 +.0010 +.0005 0 0 0 0 0 0 0 0 0 | 0 | 0 | | 0 | +.0004 | +.0012 | + .0019 | +.0027 | 0 | 0 | +.0021 | +.0058 | +.0096 | + .0135 | +.0165 | | | 0.6 +.0047 +.0028 +.0023 +.0017 +.0010 +.0005 0 +.0006 +.0005 +.0006 +.0006 +.0007 +.0006 | | <u> </u> | R _x R _y | +.0298 | +.0247 | +.0989 | +.1533 | + .2384 | +.3108 | | | | | | | | | 0.6 +.0178 +.0055 +.0038 +.0022 +.0010 +.0002 0 +.0011 +.0010 +.0008 +.0007 +.0008 | 1 | 1.0 | - | | | | | +.0006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1 | & | | | | | | | | _ | | | | | + .0007 | +.0009 | | | 0.2 + .1803 + .0134 + .0037000600200017 | w, | 0.6 | +.0178 | +.0055 | +.0038 | +.0022 | +.0010 | + .0002 | 0 | +.0011 | +.0010 | + .0008 | + .0007 | +.0006 | + .0005 | | | 0 + .0163 | 11 | 0.4 | +.0923
 | | | | 0008 | | +.0022 | +.0008 | 0006 | 0018 | 0028 | 0035 | | | 1.0 | 0 +.0163 0 +.0008 +.0019 +.0030 +.0040 0 0 +.0039 +.0096 +.0151 +.0201 +.02 | | | | | | | | | | | | | | 0076 | | | 1.0 0177 +.0025 +.0029 +.0024 +.0015 +.0007 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | +.0238 | | | 0.8 + .0130 + .0052 + .0038 + .0024 + .0013 + .0004 0 + .0010 + .0008 + .0007 + .0006 + .0006 | | | | | | | | | | | | | | | | | | 0.6 + .0299 + .0084 + .0050 + .0023 + .00060001 | | 1.00177 +.0025 +.0029 +.0024 +.0015 +.0007 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | 0.4 +.1045 +.0133 +.0051 +.000600120014 0 +.0027 +.0004001800370050 0.2 +.1774 +.0131 +.0020001700240017 0 +.00260017004700640073 0 +.0086 0 +.0013 +.0029 +.0042 +.0054 0 0 +.0064 +.0144 +.0211 +.0268 0 +.0086 0 +.0013 +.0029 +.0042 +.0054 0 0 +.0064 +.0144 +.0211 +.0268 0 +.0086 +.00973 +.1953 +.2459 +.3116 +.3434 00104 +.0067 +.0053 +.0028 +.0009 +.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ~ | | 1 | - | | | | | | | | | | | +.0006 | | | 0.2 +.1774 +.0131 +.0020001700240017 0 +.00260017004700640073 0 +.0086 0 +.0013 +.0029 +.0042 +.0054 0 0 +.0064 +.0144 +.0211 +.0268 | -` | ⊢— | | \vdash | | | | - | | | | | | | 0008 | | | 0 +.0086 0 +.0013 +.0029 +.0042 +.0054 0 0 +.0064 +.0144 +.0211 +.0268 | • | | | | | | | | | | | | | | 0060 | | | 1.0 | ٩ | | - | _ | | | | | | | | | | | 0080 | | | 1.00104 +.0067 +.0053 +.0028 +.0009 +.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | - | _ | | | | | | | | +.0064 | T.0144 | Ŧ.0211 | T .0266 | +.0310 | | | 0.8 + .0269 + .0091 + .0054 + .0023 + .00050002 | | + | | | | | | | | | | | | 0 | 0 | | | 0.6 + .0411 + .0115 + .0051 + .001200060009 | | | | | | | | | | | | | | | 0010 | | | 0.4 + .1086 + .0141 + .0032001200220017 | 1 % | | - | | | | - | | | | | | | | 0035 | | | 0.2 + .1701 + .01130003002500200011 0 + .00230034005800610056006100560048 0 + .0048 + .1615 + .2512 + .2874 + .3312 + .3489 1.0 + .0052 + .0104 + .0059 + .001800060011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | 0083 | | | 0 + .0048 0 + .0023 + .0045 + .0060 + .0072 0 0 + .0117 + .0224 + .0299 + .0358024 + .0048 + .1615 + .2512 + .2874 + .3312 + .3489
1 . 0 + .0052 + .0104 + .0059 + .001800060011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | - | | | | | | | | | | - | | 0054 | | | R _X R _Y + .0048 + .1615 + .2512 + .2874 + .3312 + .3489 1. 0 + .0052 + .0104 + .0059 + .001800060011 0 0 0 0 0 0 0 0 0. 8 + .0356 + .0116 + .0053 + .001100080010 0 + .0023 + .0012 + .000200070014 - 0. 6 + .0430 + .0126 + .0041000200160013 0 + .0025 + .0008001200280038 - 0. 4 + .1052 + .0135 + .0013002200250017 0 + .00270021005300690075 - 0. 2 + .1682 + .00940015002300150005 0 + .00190045005500430029 - 0 + .0088 0 + .0033 + .0057 + .0072 + .0083 0 0 + .0166 + .0285 + .0358 + .0414 - R _Y + .0088 + .2052 + .2808 + .3064 + .3372 + .3473 | 15 | | - | | | | | | | | | | | | +.0402 | | | 1. 0 | - | | | | | | | | | | | | | | | | | 0.8 +.0356 +.0116 +.0053 +.001100080010 0 +.0023 +.0012 +.000200070014 - 0.6 +.0430 +.0126 +.0041000200160013 0 +.0025 +.0008001200280038 - 0.4 +.1052 +.0135 +.0013002200250017 0 +.00270021005300690075 - 0.2 +.1682 +.00940015002300150005 0 +.00190045005500430029 - 0 +.0088 0 +.0033 +.0057 +.0072 +.0083 0 0 +.0166 +.0285 +.0358 +.0414 - Ry +.0088 +.2052 +.2808 +.3064 +.3372 +.3473 | | 1.0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0.6 +.0430 +.0126 +.0041000200160013 | 1 | | \vdash | | | | | - | | | | | 0007 | | 0020 | | | 0. 4 +.1052 +.0135 +.0013002200250017 0 +.00270021005300690075002300150005 0 +.0019004500550043002900150088 0 +.0033 +.0057 +.0072 +.0083 0 0 +.0166 +.0285 +.0358 +.04140088 +.2052 +.2808 +.3064 +.3372 +.3473 | - | | \vdash | | | | | - | | | | | | | 0046 | | | 0. 2 + .1682 + .00940015002300150005 0 + .0019004500550043002900450088 0 + .0033 + .0057 + .0072 + .0083 0 0 + .0166 + .0285 + .0358 + .04140088 + .2052 + .2808 + .3064 + .3372 + .3473 | " | | - | | | | | | 0 | +.0027 | 0021 | | + | | 0080 | | | 0 + .0088 0 + .0033 + .0057 + .0072 + .0083 0 0 + .0166 + .0285 + .0358 + .04140285 + .0088 + .2052 + .2808 + .3064 + .3372 + .3473 | % | | | | | | | | | | | | | | 0020 | | | Ry + .0088 + .2052 + .2808 + .3064 + .3372 + .3473 | | | | | | | | | | | | | | | +.0456 | | | Moment = (Coefficient) (pb ²) Reaction = (Coefficient) (pb) | | | | | | - | | | | | | • | 1 | | | | | W POSITIVE SIGN CONVE | F | ree | x | 4 | | | | | | | | W SOCIT | № |)
My | → X | | FIGURE 29.—Plate fixed along two adjacent edges, moment and reaction coefficients, Load III, 1/3 uniform load. | | | | | | | Иx | | | | | N | 1 _y | | | |----------|------------|-------------------------------|---------|---------|-------------|---------|----------------|----------|--|---------|--------------|----------------|---------|----------------| | | y/b | R _X X/o | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1.0 | +.0075 | +.0007 | +.0006 | +.0004 | +.0002 | +.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | _% | 0.8 | +.0252 | +.0017 | +.0011 | +.0006 | + .0003 | +.0001 | 0 | + .0003 | +.0002 | +.0001 | +:0001 | +.0001 | | | -` | 06 | + .0501 | + .0031 | + .0020 | +.0011 | + .0005 | +.0001 | 0 | + .0006 | + .0004 | +.0002 | +.0001 | + .0000 | | | l n | 0.4 | + .0755 | +.0046 | + 0029 | | + .0007 | +.0001 | 0 | + .0009 | + .0006 | + .0003 | +.0001 | 0000 | | | 9% | 0.2 | +.0964 | +.0052 | +.0031 | +.0015 | | + .0000 | 0 | +.0010 | +.0006 | + .0002 | 0001 | 0003 | 0004 | | 0 | 0 | + .0056 | 0 | +.0001 | + . 0004 | + .0008 | +.0011 | 0 | 0 | +.0007 | + .0021 | +.0038 | +.0056 | +.0072 | | ļ | ļ <u>.</u> | Rx Ry | +.0056 | 0008 | +.0510 | + .0996 | +.1819 | + . 2706 | <u>. </u> | | | | | | | İ | 1.0 | +.0076 | +.0043 | +.0035 | +.0026 | +.0016 | +.0007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7/ | 0.8 | + .0557 | +.0078 | +.0052 | +.0031 | +.0015 | +.0005 | 0 | +.0016 | + .0011 | +.0007 | +.0005 | +.0004 | +.0004 | | | 0.6 | +.1026 | +.0119 | +.0074 | +.0039 | +.0015 | +.0003 | 0_ | +.0024 | +.0014 | +.0007 | +.0001 | 0004 | 0006 | | 11 | 0.4 | +.1513 | +.0150 | +.0085 | + 0040 | +.0011 | 0002 | 0_ | +.0030 | +.0015 | +.0002 | 0009 | 0017 | 0022 | | g/b | 0.2 | +.1475 | +.0122 | +.0060 | +.0022 | +.0001 | 0006 | 0 | +.0024 | + .0008 | 0006 | 0017 | 0026 | 0032 | | " | 0 | 0598 | 0 | +.0005 | +.0014 | +.0024 | +.0035 | 0 | 0 | +.0024 | +.0069 | +.0121 | +.0175 | +.0221 | | | | R _X R _Y | 0598 | +.0133 | +.1020 | + .1780 | +.0015 | T - | <u> </u> | | | | | | | | 0.8 | + .0040 | +.0115 | +.0095 | +.0066 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 3/8 | 0.6 | + .1553 | +.0233 | +.0133 | +.0066 | 0 | + .0036 | | +.0012 | +.0004 | 0000 | 0002 | | | | 1 | 0.4 | +.2050 | + 0246 | | +.0062 | 0 | + 0047 | +.0024 | +.0003 | 0013 | 0026 | 0034 | | | | - 11 | 0.2 | +.1517 | +.0152 | +.0122 | +.0045 | 0_ | +.0049 | +.0017 | 0012 | 0037 | 0055 | 0067 | | | | 9/p | 0.2 | +.0044 | 0 | +.0009 | +.0016 | 0 | +.0030 | + 0006 | 0014 | - 0028 | 0037 | 0043 | | | | | | R X Ry | +.0044 | + .0309 | + 0024 | 0 | 0 | + .0044 | + .0119 | + .0202 | +.0286 | +.0354 | | | | <u> </u> | 1.0 | +.0166 | +.0221 | +.0167 | +.0100 | +.4185 | _ | | 1 | | | | | | | | 0.8 | + .1402 | +.0295 | +.0177 | +.0090 | 0 | 0
+.0059 | 0 | 0 | 0 | 0 | 0 | | | | 72 | 0.6 | +.1953 | +.0334 | +.0174 | +.0069 | +.0032 | +.0003
0013 | 0 | + .0067 | +.0032 | +.0010 | 0007 | 0019 | 0026 | | l I | 0.4 | + .2311 | +.0309 | +.0135 | +.0037 | 0011 | 0021 | 0 | +.0062 | +.0012 | 0010
0032 | 0041 | 0064 | 0079 | | " | 0.2 | +.1413 | | +.0058 | +.0010 | 0005 | - 0004 | 0 | - | +.0004 | 0012 | 0018 | 0092 | 0109 | | 8 | 0 | 0079 | 0 | +.0015 | +.0039 | +.0064 | +.0089 | 0 | 0 | | +.0193 | +.0318 | +.0443 | 0017
+.0546 | | | | R _X R _y | 0079 | | | | | + .4827 | | 1.0011 | | 1.0318 | 1.0443 | +.0346 | | | 1.0 | +.0974 | +.0465 | | | 8000.+ | 0028 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | _ | 0.8 | +.2067 | +.0487 | | +.0084 | 0002 | 0027 | 0 | | +.0040 | 0004 | 0039 | 0065 | 0087 | | 3/4 | 0.6 | +.2303 | +.0459 | | +.0046 | 0023 | - 0036 | 0 | +.0092 | +.0020 | 0044 | 0093 | 0129 | 0155 | | | 0.4 | +.2383 | +.0360 | +.0121 | +.0010 | 0030 | 0029 | 0 | +.0072 | 0003 | 0060 | 0096 | 0117 | - 0132 | | | 0,2 | +.1193 | +.0160 | +.0042 | +.0005 | +.0006 | +.0016 | 0 | +.0032 | | +.0019 | +.0050 | +.0083 | +.0108 | | q/p | 0 | 0194 | 0 | +.0029 | + .0070 | +.0110 | +.0148 | 0 | 0 | | +.0352 | | | +.0896 | | | | Rx | 0194 | +.1105 | +.2399 | +.3236 | + . 4489 | +.5505 | <u>.</u> | | | 1 | | | | | 1.0 | +.1917 | +.0662 | +.0291 | +.0056 | 0059 | 0077 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0.8 | +.2481 | +.0613 | +.0243 | +.0035 | 0056 | 0063 | 0 | +.0123 | +.0039 | 0019 | 0059 | 0089 | 0118 | | - [| 0.6 | +.2364 | +.0518 | +.0173 | +.0004 | 0059 | 0054 | ۵ | +.0104 | +.0009 | 0064 | 0112 | 0144 | 0172 | | ם ־ | 0.4 | +.2289 | + .0368 | +.0092 | 0015 | 0041 | 0028 | 0 | +.0074 | 0015 | 0062 | 0078 | 0080 | 0084 | | ٩/٥ | 0.2 | +.1047 | +.0150 | +.0030 | +.0007 | +.0021 | +.0040 | 0 | +.0030 | +.0022 | +.0073 | +.0148 | +.0216 | +.0268 | | | 0 | 0224 | 0 | +.0046 | +.0103 | +.0152 | +.0197 | 0 | 0 | +.0232 | +.0515 | + 0759 | +.0987 | +.1157 | | | | P.Z | 0224 | +.1598 | +.2991 | +.3794 | + . 4909 | +.5586 | | | | | | | | Y | - (1 | | | - | | | | | | - | | Y | | | FIGURE 30.—Plate fixed along two adjacent edges, moment and reaction coefficients, Load IV, uniformly varying load. | | | | | | N | Λ _x | | | | | N | / _y | | | | |-----------------|---|-------------------------------|------------------|--------|---------|----------------|--------------|--------|----------|---------|---------|----------------|---------------------------------|--------------|--| | ĺ | У/ в | RX X/O | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8
 1.0 | | | | 1.0 | 0003 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | , ∞ | 0.8 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001 | +.0000 | 0 | +.0000 | + 0000 | +.0000 | +.0001 | +.0001 | + 0001 | | | | 0.6 | +.0144 | +.0011 | +.0007 | +.0004 | +.0002 | +.0001 | 0 | + .0002 | +.0002 | + 0001 | +.0001 | +.0001 | +.0001 | | | ti | 0.4 | +.0504 | +.0030 | +.0019 | +.0010 | +.0004 | +.0001 | 0 | + 0006 | +.0004 | + 0002 | +.0001 | - 0000 | 0001 | | | ۹ | 0.2 | +.0843 | +.0044 | +.0026 | +.0013 | +.0004 | +.0000 | 0 | + .0009 | +.0005 | +.0002 | 0001 | - 0003 | 0004 | | | 6 | 0 | +.0063 | 0 | +.0001 | +.0004 | +.0007 | +.0010 | 0 | 0 | +.0007 | +.0020 | +.0035 | +.0052 | +.0066 | | | | | <u> </u> | +.0063 | +.0019 | | +.0964 | +. 1713 | | | · | T | | | , | | | | 1.0 | 0057 | | | +.0007 | +.0005 | +.0003 | 0 - | 0 | 0 | | 0 | 0 | 0 | | | -74 | 0.8 | + .0031 | +.0017 | +.0014 | +.0011 | +.0007 | +.0003 | 0 | +.0003 | +.0003 | | +.0005 | +.0006 | +.0007 | | | 1 | 0.6 | +.0331 | +.0048 | ļ | +.0019 | +.0009 | +.0002 | 0 - | +.0010 | +.0007 | | +.0004 | + 0003 | +.0002 | | | 111 | 0.4 | + 1010 | +.0096
+.0098 | +.0053 | +.0023 | +.0005
0002 | 0002 | 0 | + 0019 | +.0009 | 0007 | 0007
0018 | 0013 | 0017 | | | a/ _b | 0.2 | 0472 | 0 | : | +.0012 | +.0021 | +.0029 | 0 | 0 | +.0022 | | +.0103 | +.0146 | +.0181 | | | | ├ ॅ | Rx Ry | 0472 | | - | +.1661 | + 2646 | +.3544 | <u> </u> | 1.0022 | 1.0001 | 14.0103 | 1+.0146 | 7.0181 | | | \vdash | 1.0 | ~.01 69 | +.0022 | +.0027 | +.0023 | +.0016 | +.0008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60 | 0.8 | +.0147 | +.0053 | +.0040 | +.0027 | +.0015 | +.0006 | 0 | +.0011 | +.0009 | +.0009 | +.0008 | +.0009 | | | | 3/1 | 0.6 | +.0565 | +.0099 | +.0059 | +.0029 | +.0010 | 0000 | 0 | +.0020 | +.0012 | +.0005 | 0001 | 0006 | 0009 | | | l u | 0.4 | +.1351 | +.0148 | +.0069 | +.0020 | 0004 | 0011 | 0 | +.0030 | +.0008 | 0012 | 0029 | 0042 | 0051 | | | ٩ | 0.2 | +.1353 | +.0117 | +.0040 | +.0003 | 0011 | 0011 | 0 | +.0023 | +.0000 | 0019 | 0033 | 0042 | 0049 | | | 6 | 0 | +.0125 | 0 | +.0008 | +.0019 | +.0031 | +.0043 | 0 | 0 | +.0038 | +.0097 | +.0156 | +.0213 | +.0257 | | | | R _X R _y +.0125 +.0460 +.1236 +.1740 +.2538 +.3159 1.00220 +.0052 +.0053 +.0039 +.0023 +.0010 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | 1.00220 +.0052 +.0053 +.0039 +.0023 +.0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | _ω | 0.8 +.0298 +.0095 +.0065 +.0038 +.0018 +.0005 0 +.0019 +.0014 +.0010 +.0006 +.0004 +.0003 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | В | 0.6 +.0753 +.0143 +.0076 +.0030 +.00040005 0 +.0029 +.00140001001400250031
0.4 +.1508 +.0178 +.0068 +.001000150017 0 +.0036 +.00020028005200700082 | | | | | | | | | | | | | | | | ₀/þ | 0.2 | +.1313 | +.0119 | +.0030 | 0005 | 0014 | 0010 | 0 | +.0024 | 0005 | 0025 | 0036 | 0041 | 0044 | | | 0 | ٥ | + .0050 | 0 | +.0013 | +.0030 | | +.0060 | 0 | 0 | +.0063 | +.0148 | +.0228 | +.0301 | +.0358 | | | L | | R _X R _Y | + .0050 | +.0755 | - | +.2132 | | +.3382 | | | | | | | | | | 1.0 | 0036 | +.0130 | 1 | +.0045 | | 0003
0006 | 0 | +.0033 | + .0018 | + .0005 | 0
0007 | 0
0016 | 0023 | | | 3/4 | 0.8 | +.0540 | + 0191 | | +.0016 | 0012 | 0016 | 0 | +.0038 | +.0009 | | 0043 | 0060 | | | | 1 1 | 0.6 | +.1561 | +.0193 | | 0011 | 0012 | 0022 | | +.0039 | 0014 | 0055 | 0081 | 0097 | | | | " | 0.2 | + 1218 | +.0110 | | - 0012 | | - 0002 | 0 | +.0022 | 0013 | | 0017 | 0006 | | | | ٥/p | 0 | 0000 | 0 | | + 0049 | | +.0088 | 0 | 0 | +.0118 | +.0246 | | +.0438 | +.0507 | | | | _ | R _X R _Y | 0000 | +.1274 | +.2163 | +.2612 | +.3210 | +.3569 | | | | | | | | | | 1.0 | +.0261 | +.0198 | | | 0013 | 0022 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0.8 | +.0687 | +.0207 | +.0089 | +.0017 | 0016 | 0019 | 0 | +.0041 | +.0018 | 0001 | 0016 | 0028 | 0039 | | | - | 0.6 | +.0943 | +.0209 | +.0064 | 0004 | 0027 | 0023 | 0 | +.0042 | +.0002 | 0033 | 0058 | 0074 | 0086 | | | ا ا | 0.4 | +.1522 | +.0188 | +.0026 | - 0024 | 0032 | 0022 | 0 | +.0038 | 0028 | 0068 | 0086 | 0092 | 0098 | | | ٩/٥ | 0.2 | +.1168 | +.0096 | | | | +.0008 | 0 | +.0019 | 0016 | 0008 | +.0016 | | +.0059 | | | ! | 0 | +.0018 | 0 | +.0035 | +.0066 | +.0088 | +.0107 | 0 | 0 | +.0174 | +.0329 | +.0440 | +.0534 | +.0603 | | | | | <u> </u> | +.0018 | +.1676 | + .2512 | +.2879 | +.3348 | +.3567 | | | | | | | | | Y | - 0 | , q | × × | | | | (Coeffic | | | | Mx (| Y
R. R. | ДР

 | — → X | | | 0.,,,, | | - | | p 🖳 | | | | | | PC | SITIVE | SIGN C | CONVEN | TION | | Figure 31.—Plate fixed along two adjacent edges, moment and reaction coefficients, Load V, 2/3 uniformly varying load. | | Ĭ | | | | 1 | M _x | | | 7 | | ٨ | vi y | | · | |--------|--|-------------------|---------------------|----------------|--------|---------------------|----------------|---------------|---------|--------------|--------------|---------------|----------------|--------------| | 1 | У/Ь | Rx X/o | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | .0.8 | 1.0 | | | 1.0 | | +.0000 | +.0000 | +.0000 | +.0000 | | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0 | | _% | 0.8 | 0001 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | +.0000 | | | + | | +.0000 | | -` | 0.6 | 0002 | +.0001 | +.0001 | +.0000 | +.0000 | +.0000 | 0 | +.0000 | +.0000 | +.0000 | - | | +.0000 | | 11 | 0.4 | +.0040 | | +.0003 | +.0002 | +.0001 | +.0001 | 0 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001 | | % | 0.2 | + .0482 | +.0023 | +.0013 | +.0006 | +.0002 | | - | +.0005 | +.0003 | +.0001 | 0001 | 0002 | 0002 | | ° | <u>Q.</u> | +.0073 | 0 | +.0001 | +.0003 | | +.0008 | 0 | 0 | +.0006 | +.0016 | +.0028 | +.0040 | +.0041 | | ļ | 1.0 | 0009 | +.0073 | +.0091 | +.0514 | +.0001 | +.1410 | +. 1925 | | T - | 1 | т | | | | 1 | 0.8 | 0002 | + 0002 | | +.0002 | +.0001 | +.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 74 | 0.6 | +.0006 | +.0006 | +.0005 | +.0004 | +.0002 | +.0001 | 0 | +.0000 | +.0000 | +.0001 | +. 0001 | . | +.0001 | | " | 0.4 | +.0129 | +.0020 | +.0013 | | +.0003 | +.0000 | 0 | + .0004 | +.0003 | +.0002 | +.0001 | +.0002 | +.0003 | | | 0.2 | +.0719 | +.0047 | +.0019 | +.0004 | 0003 | 0004 | 0 | +.0009 | + 0002 | 0005 | 0011 | | +.0000 | | %
% | 0 | 0212 | 0 | +.0003 | +.0007 | +.0011 | +.0015 | 0 | 0 | +.0014 | +.0037 | | 1 . | 4 | | | | RxRy | 0212 | +.0365 | +.0923 | +.1295 | +.1807 | +.2166 | | | | | | 1.0001 | | | 1.0 | 0035 | +.0002 | +.0004 | +.0004 | +.0003 | +.0002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3/8 | 0.8 | + .0010 | +.0007 | 4 .0006 | +.0005 | +.0003 | +.0001 | 0 | +.0001 | +.0001 | +.0002 | +.0002 | +.0002 | + 0003 | | w, | 0.6 | + . 00 39 | +.0015 | +.0011 | +.0006 | +.0003 | +.0001 | 0 | +.0003 | + . 0003 | +.0003 | +.0003 | +.0002 | +.0002 | | li li | 0.4 | + .0207 | | | +.0006 | 0000 | 0002 | 0 | +.0006 | +.0004 | +.0000 | 0003 | 0005 | 0007 | | 10 | 0.2 | + .0756 | +.0051 | | 0004 | 0008
+.0016 | +.0020 | 0 | +.0010 | 0002 | 0013 | 0021 | 0026 | 0030 | | % | 0 | + .0221 | 0 | | +.0011 | ٥ | 0 | +.0023 | +.0055 | +.0080 | +.0102 | 8110.+ | | | | ļ | | | | | +.1027 | +.1249 | +.1699 | | | | | | | | | | 0.8 | | | +.0008 | | 0 | +.0003 | 0 | 0 | 0 | 0 | 0 | | | | 2 | 0.6 | | | | | +.0004 | +.0001
0000 | 0 | +.0005 | | +.0002 | +.0001 | +.0002
0000 | | | 1 | 0.4 | | | | + 0003 | 0003 | 0004 | 0 | +.0008 | + .0003 | 0003 | 0008 | + | 0001
0014 | | " | 0.2 | +.0747 | | | 0008 | 0010 | 0007 | 0 | +.0010 | 0007 | 0019 | 0026 | | 0032 | | q/p | 0 | +.0201 | 0 | | | | +.0025 | 0 | 0 | | | | | +.0140 | | | | RX | +.0201 | +.0795 | +.1217 | +.1402 | +.1629 | +.1705 | | | | | _::_::. | | | | 1.0 | 0037 | +.0017 | + .0014 | 8000. | +.0003 | + .0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | .4 | 0.8 | + .0068 | +.0024 | + . 0014 | +.0006 | +.0001 | ~.0001 | 0 | +.0005 | +.0003 | +.0002 | + 0000 | 0001 | 0002 | | 3/4 | 0.6 | +.0104 | +.0031 | + .0014 | 0003 | 0002 | 0002 | 0 | +.0006 | +.0004 | 0000 | 0004 | 0007 | 0009 | | 13 | 0.4 | | | | | 0006 | 0005 | 0 | +.0008 | 0000 | 0009 | ~.0015 · | 0019 | 0021 | | 9 | 0.2 | | +.0041 | | | 0008 | 0005 | 0 | +.0008 | 0014 | 0024 | | + | - 0026 | | 6 | 0 | + .0215 | | +.0012 | | | +.0030 | 0 | 0 | +.0061 | +.0106 | +.0133 | +.0152 | +.0167 | | - | | | | | | | | +.1710 | | | - 2 1 | | | | | | 0.8 | | | | +.0005 | 0001
0002 | 0003
0003 | 0 | + 0006 | + .0003 | + 0001 | - 0002 | 0003 | 00005 | | - | 0.6 | | | | | 0004 | 0003 | 0 | | + .0003 | | 0007 | | 0012 | | 11 | 0.4 | +.0246 | | | | 0007 | 0004 | 0 | + 0008 | | | | - 0019 | 0021 | | q/o | 0.2 | | | | | | 0003 | 0 | +.0007 | | | | | 0017 | | | ٥. | +.0258 | | +.0016 | | | + .0034 | 0 | 0 | | | + | | +.0181 | | | | Ry | | + .1252 + | | | 1683 | +.1704 | | | | | | $\neg \neg$ | | * | - 0 | qq | 1 | | | oment =
action = | | | | | ** | R, R, | | → x | | 9 | ,,,,,,,, | Д ў ., | - l m
->- | - ρ | | | | | | PO | W. SITIVE | SIGN C | ONVENT | ION | FIGURE 32.—Plate fixed along two adjacent edges, moment and reaction coefficients, Load VI, 1/3 uniformly varying load. | | | | | | ٨ | Иx | | | | | N | l _y | | | | |------------|--|-------------------------------|---------------------------|---------|---------|---------|--------------------|--------|---|---------|---------|-------------------------------|----------------|------------|--| | | y/b | Rx X/0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | | 1.0 | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | <u>8</u> / | 0.8 | 0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | +.0000 | +0000 | +.0000
 +.0000 | +.0000 | +.0000 | | | - | 0.6 | 0001 | +.0000 | + .0000 | +.0000 | +.0000 | +.0000 | 0 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | | - 0 | 0.4 | 0001 | +.0001 | +.0001 | +.0000 | +.0000 | +.0000 | 0_ | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | | q/p | 0.2 | +.0137 | +.0006 | | +.0002 | +.0001 | +.0000 | 0 | +.0001 | +.0001 | + .0001 | +.0000 | _ | +.0000 | | | 0, | 0 | +.0050 | 0 | +.0001 | +.0002 | +.0003 | +.0004 | 0 | 0 | + .0004 | +.0010 | +.0016 | +.0022 | +.0027 | | | | | R _X R _y | +.0050 | +.0169 | +.0463 | +.0669 | +.0961 | +.1185 | <u> </u> | 1 . | | | | | | | | 1.0 | 0002 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | 0 | 0 | 0 | 0 | +.0000 | 0 | 0 | | | 1/4 | 0.8 | 0001 | +.0000 | + .0000 | +.0000 | +.0000 | +.0000 | 0 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | | | | | 0.6 | 0001 | + .0001 | +.0001 | +.0001 | +.0001 | +.0000 | 0 | +.0000 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001 | | | " | 0.4 | +.0011 | + .0003 | +.0005 | | 0001 | 0001 | 0 | +.0001 | +.0001 | 0000 | 0001 | 0002 | 0003 | | | a/p | 0.2 | +.0202
0036 | 0 | +.0003 | +.0003 | | +.0006 | 0 | 0 | +.0008 | +.0017 | + 0025 | +.0031 | +.0036 | | | | L ů | R _X R _y | 0036 | +.0391 | + .0667 | +.0815 | +.0997 | +.1086 | l | 1.0000 | | | | | | | - | 1.0 | 0007 | +.0000 | +.0001 | +.0001 | +.0001 | +.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | _ | 0.8 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001 | +.0000 | 0 | +.0000 | +.0000 | +.0000 | +.0000 | +.0000 | - | | | 3/8 | 0.6 | +.0004 | + .0003 | +.0002 | +.0001 | +.0001 | +.0000 | 0 | +.0001 | +.0001 | +.0001 | +.0001 | +.0001 | | | | 1 | 0.4 | +.0026 | + .0006 | + .0003 | +.0001 | + .0000 | 0000 | 0 | +.0001 | +.0001 | + .0001 | +.0000 | 0000 | 0000 | | | 1 11 | 0.2 | +.0212 | +.0013 | + .0003 | 0001 | - 0002 | 0001 | 0 | +.0003 | +.0000 | 0002 | 0004 | 0005 | 0006 | | | % | 0 +.0194 0 +.0002 +.0004 +.0006 +.0007 0 0 +.0011 +.0022 +.0030 +.0035 +. R _X R _Y +.0194 +.0511 +.0673 +.0740 +.0825 +.0846 | | | | | | | | | | | | | | | | | R _X R _Y + . 0194 + . 0511 + . 0673 + . 0740 + . 0825 + . 0846 | | | | | | | | | | | | | | | | - | R _X R _Y + .0194 + .0511 + .0673 + .0740 + .0825 + .0846 | | | | | | | | | | | | | | | | | 1. 00010 +.0001 +.0001 +.0001 +.0001 +.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | 1/2 | 0.6 | +.0010 | +.0004 | +.0003 | +.0001 | +.0000 | +.0000 | 0 | +.0001 | +.0001 | +.0001 | +.0000 | +.0000 | +.0000 | | | | 0.4 | +.0033 | + .0007 | | +.0001 | 0000 | 0001 | 0 | +.0001 | +.0001 | +.0000 | 0001 | 0901 | 0002 | | | " | 0.2 | +.0209 | +.0012 | +.0001 | 0002 | 0002 | 0001 | 0 | +.0002 | 0001 | 0004 | 0005 | 0006 | 0007 | | | 0/p | 0 | +.0202 | 0 | | +.0005 | | +.0008 | 0 | 0 | +.0015 | +.0027 | +.0034 | +.0039 | +.0043 | | | | | R _x R _y | +.0202 | +.0591 | +.0732 | +.0780 | +.0835 | +.0843 | | | | | | | | | | 1.0 | 0009 | +.0003 | +.0002 | +.0001 | +.0001 | +.0000 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | | | _ | 0.8 | +.0010 | +.0004 | +.0002 | +.0001 | +.0000 | 0000 | 0 | +.0001 | +.0001 | +.0000 | +.0000 | 0000 | 0000 | | | 3/4 | 0.6 | +.0016 | +.0005 | +.0003 | +.0001 | 0000 | 0000 | 0 | +.0001 | +.0001 | +.0000 | 0000 | 000i | 0001 | | | ii ii | 0.4 | +.0037 | +.0008 | +.0002 | 0001 | 0001 | 0001 | 0 | +.0002 | +.0000 | 0001 | 0002 | - 0003 | 0003 | | | ا م | 0.2 | +.0204 | +.0010 | 0001 | 0003 | 0002 | 0001 | 0 | +.0002 | 0003 | 0005 | 0006 | 0006 | 0006 | | | 0 | 0 | +.0233 | 0 | +.0005 | +.0007 | +.0008 | +.0009 | 0 | 0 | +.0023 | +.0035 | +.0041 | +.0045 | +.0048 | | | | | Rx Ry | +.0233 | +.0688 | +.0787 | +.0811 | +.0838 | +.0841 | | | | | | | | | | 1.0 | 0003 | +.0004 | +.0003 | +.0001 | 0000 | 0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0.8 | +.0014 | +.0005 | +.0002 | +.0001 | 0000 | 0000 | 0 | +.0001 | +.0001 | +.0000 | 0000 | 0000 | 0001 | | | - | 0.6 | +.0017 | +.0006 | +.0002 | 0000 | 0001 | 0001 | 0 | + .0001 | +.0001 | 0000 | 0001 | 0001 | 0002 | | | " | 0.4 | +.0035 | +.0007 | +.0001 | 0001 | 0001 | 0001 | 0 | +.0001 | | 0002 | | 0003 | 0003 | | | o/p | 0.2 | +.0206 | +.0008 | 0002 | 0002 | 0002 | 0001 | 0 | +.0002 | 0004 | 0006 | 0005 | | 0005 | | | | 0 | +.0270 | 0 | +.0006 | +.0008 | +.0009 | +.0010 | 0 | 0 | +.0028 | +.0040 | +.0045 | +.0048 | +.0050 | | | | | Ry | +.0270 | +.0739 | +.0808 | +.0822 | +.0838 | +.0839 | | | | | | | | | ¥ | 0 | | ý.
- x - ¥ | | | | (Coeffi
(Coeffi | | | | M×
W | R _x R _y | M _y | - × | | | U | | | '. | ., | | | | | | P | OSITIVE | SIGN C | ONVEN | TION | | Figure 33.—Plate fixed along two adjacent edges, moment and reaction coefficients, Load VII, 1/6 uniformly varying load. | | Г | | Ī | Mx | | | | | | 1 | | | | | | | |--|---------------|---------------------------------------|----------------|-------------------|---|----------------|----------------|----------------|--------------|--|---------------|--|--------------|----------------------|---------------|----------------------| | | У/ь | R. X/o | - | 0.05 | 0.1 | | 0.1 | 104 | 105 | _ | 0.05 | 101 | My | T | | T | | \vdash | 0.5 | +.5055 | | | | +.0024 | 0.3
0226 | 0.4 | 0.5 | 0 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | | | 0.4 | +.5068 | +.0825 | + | | +.0022 | 0225 | + | | + | | + | +.0002 | | 0082 | 0093 | | 1% | 0.3 | +.5060 | +.0796 | | | | 0219 | + | + | +.0159 | + | | + | 0055
0071 | 0088 | | | ", | 0.2 | +.4778 | +.0690 | +.0470 | +.0282 | 0004 | 0192 | + | + | | - | - | + | + | 0132 | 0145 | | مّ ا | 0.1 | +.3316 | +.0400 | +.0254 | +.0139 | 0017 | 0108 | 0155 | 0170 | +.0080 | +.0047 | - | 0033 | + | 0084 | 0090 | | 9 | 0.05 | | | +.0108 | | | 0026 | + | | +.0034 | +.0026 | +.0026 | +.0044 | +.0071 | +.0094 | +.0102 | | | <u> </u> | 0513
R _x R _y | 0 | +.0005 | _ | +.0047 | +.0076 | + | | | +.0024 | +.0078 | +.0234 | +.0381 | +.0481 | +.0516 | | - | 0.5 | +.5142 | +.0815 | 0797
+.0573 | | +.2203 | +.3559
0224 | +.4352
0365 | + | + | | T | T | | T | r | | | 0.4 | +.5111 | +.0797 | +.0557 | | +.0011 | 0220 | | + | +.0159 | | +.0068 | 0012
0017 | 007I | 0108 | 0121 | | % | 0.3 | +.4928 | +.0728 | +.0499 | | 0000 | 0203 | + | | +.0146 | - | 4 | 0031 | 0093 | 0132 | 0129
0145 | | 1 11 | 0.2 | +.4260 | +.0568 | +.0375 | +.0217 | 0014 | 0159 | 0238 | | +.0114 | | +.0030 | | 0096 | 0128 | 0139 | | مي ا | 0.1 | +.2350 | +.0270 | | | 0011 | 0066 | 0092 | 0100 | +.0054 | +.0032 | | 0006 | | 0013 | 0012 | | 0 | 0.05 | | | +.0066 | | | +.0003 | | + | + | +.0022 | +.0034 | +.0082 | +.0135 | +.0174 | +.0188 | | | <u> </u> | 0496
Rx Ry | 0
0496 | +.0005
0631 | | +.0049 | +.0080 | | | | +.0025 | +.0082 | +.0247 | + 0399 | +.0502 | +.0538 | | \vdash | 0.5 | +.5143 | +.0765 | +.0526 | +.0319 | 0001 | 0214 | +.4382
0336 | +.4638 | | | 1. 0054 | | 1 2121 | 1 | | | | 0.4 | +.5045 | | | | 0004 | 0207 | 0321 | 0358 | | +.0102 | +.0054 | 0033
0037 | 0101
0104 | 0144 | 0159 | | % | 0.3 | +.4660 | | +.0429 | +.0251 | 0012 | 0181 | 0274 | | + | +.0082 | | 0045 | 0107 | 0147 | 0161
0159 | | H | 0.2 | +.3697 | +.0462 | +.0297 | +.0166 | 0017 | 0127 | 0186 | 0204 | + | +.0055 |) | 0039 | 0082 | 0106 | 0114 | | ٥ | 0.1 | +.1635 | +.0191 | +.0119 | +.0065 | 0004 | 0037 | 0052 | 0056 | +.0038 | +.0025 | +.0018 | +.0022 | +.0036 | +.0050 | +.0056 | | 0 | - | +.0150 | | +.0046 | +.0030 | +.0018 | +.0020 | +.0025 | +.0028 | +.0013 | +.0021 | +.0042 | +.0110 | +.0180 | +.0231 | +.0249 | | 1 . | P | 0454
R _x R _y | 0 | +.0005 | +.0017 | +.0050 | +.0082 | +.0102 | | 0 | +.0025 | +.0083 | +.0252 | +.0408 | +.0511 | +.0547 | | \vdash | 0.5 | +.4999 | 0454
+.0686 | 0527
+.0457 | +.0410 | +.2277
0017 | +.3616
0196 | +.4394
0293 | +.4648 | 1 0122 | | | | | | | | | 0.4 | +.4845 | | +.0432 | +.0248 | 0017 | 0196 | 0293 | 0324
0306 | +.0137 | +.0087 | | 0055
0056 | 0128 | 0175 | 0191 | | 3,4 | | +.4311 | | +.0357 | +.0200 | 0022 | 0156 | 0227 | - 0249 | | | | 0054 | 0126
011 3 | 0171
0150 | 0186
0162 | | 1 11 | 0.2 | +.3179 | +.0374 | +.0235 | +.0126 | 0019 | 0101 | 0142 | 0155 | | +.0043 | +.0014 | 0033 | 0064 | 0081 | 0086 | | | 0.1 | +.1133 | +.0140 | +.0089 | +.0049 | +.0001 | 001B | 0025 | 0026 | +.0028 | +.0021 | +.0023 | +.0045 | +.0074 | | +.0107 | | q/و | 0.05 | 0109 | | | | | +.0031 | +.0039 | +.0043 | +.0009 | +.0021 | +.0048 | +.0129 | +.0210 | +.0268 | +.0288 | | 1 | 0 | 0412 | 0 | | +.0017 | | +.0082 | +.0102 | +.0109 | 0 | +.0024 | + 0083 | +.0254 | +.0409 | +.0511 | +.0546 | | Н | $\overline{}$ | | 0412
+.0592 | \longrightarrow | +.0445 | +.2305
0031 | +.3626 | +.4384 | +.4629 | | | 1 | | | T | | | 1 1 | | | | | +.0193 | 0031 | 0172
0162 | 0245
0229 | 0267
0250 | +.0118 | | | 0072 | 0146 | | 0209 | | % | | | | | +.0153 | 0029 | 0131 | 0183 | 0198 | +.0092 | | | 0070
0059 | 0139
0113 | 0183 | 0198
0157 | | | 0.2 | +.2736 | | | +.0094 | 0020 | 0079 | 0107 | 0114 | +.0060 | | | 0026 | 0047 | | 0061 | | 1 1 | 0.1 | +.0798 | +.0106 | +.0068 | + .0037 | +.0005 | -,0005 | 0006 | 0006 | | | +.0027 | | | | +.0139 | | 1% | | | +.0031 | +.0026 | 1200.+ | +.0025 | | +.0047 | +.0051 | +.0006 | +.0021 | +.0051 | +.0140 | +.0226 | +.0285 | +.0306 | | | _0 | 0377 | | | | +.0050 | | | +.0106 | 0 | +.0024 | +.0083 | +.0251 | +.0400 | +.0497 | +.0530 | | \vdash | | R _x R _y | 0377 | | +.0503 | | | | +.4546 | 1 | | | r | | | | | 1 1 | | | | + | +.0156 | 0040
0039 | 0147
0137 | 0198
0184 | | +.0100 | | +.0007 | | 0153 | | 0213 | | - | \rightarrow | | + | | +.0112 | 0033 | 0109 | 0143 | ~.0157 | - | | +.0006 | 0078
0061 | 0143
0109 | $\overline{}$ | 01
98
0147 | | " | 0.2 | | | | +.0068 | 0020 | 0061 | 0078 | 0082 | | | +.0007 | 0020 | 0033 | | 0040 | | 2 | | | +.0082 | | | | +.0003 | +.0006 | +.0007 | +.0016 | +.0018 | +.0028 | +.0068 | +.0112 | +.0144 | 0156 | | | 0.05 | 0316 | +.0024 | 1200.+ | +.0018 | +.0026 | +.0040 | +.0050 | +.0054 | +.0005 | +.0021 | +.0052 | +.0143 | +.0229 | +.0286 - | .0306 | | l | 0 | 035 I | | | | +.0049 | | | | 0 | +.0024 | +.0082 | +.0244 | +.0382 | +.0470 + | .0500 | | - | | | 0351 | 0316 | +.0585 | +.2373 | +.3551 | +.4189 | +.4389 | | | | | | | | | į | - | | | | | | | | | | | | Y | | | | | | | | | | | • | | | • | ent)(pa²
ent)(pa | • | 1 | A. R. | R _y M, | /p | x | | o# | m | | - <i>/</i> ¥ | – x | -D→ | π. | | | | | | W
PO: | SITIVE : | SIGN CC | NVENTI | ON | FIGURE 34.—Plate fixed along four edges, moment and reaction coefficients, Load I, uniform load. RESULTS 41 | | | Mx | | | | | | | | | | | My | | .004200600066
.007601020111
.007200890095
.0024 +.0035 +.0039
.0269 +.0334 +.0356
.002900390043
.006000800087
.008301070114
.004500520054
.0053 +.0070 +.0076
.0247 +.0301 +.0319
.005500460050
.006700860092
.007800970103
.002500260026 | | | | | |----------|---|---------------------------------------|-----------|-----------------|--------|--------------|--------------------------|------------------|--------------|----------|----------------|-----------|------------------------|-----------|---|-------------------|--|--|--| | | У/ _b | R _X X/o | 0 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | | | | | | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0.4 | +.1047 | +.0162 | +.0113 | | +.0002 | 0045 | 0072 | 0081 | +.0032 | +.0022 | +.0013 | 0004 | 0017 | | | | | | | m | 0.3 | +.2066 | +.0305 | +.0209 | +.0126 | 0001
0012 | 0086
0108 | 0134 | 0149
0176 | | +.0041 | | 0014 | | _ | | | | | | - 11 | 0.2 | +.2574 | +.0278 | +.0167 | +.0083 | 0012 | 0078 | 0160
0103 | 0111 | | +.0047 | +.0018 | 0034 | | | - | | | | | q/p | | +.1363 | +.0135 | +.0077 | +.0036 | 0007 | 0024 | 0029 | 0030 | | +.0016 | | | +.0024 | + | | | | | | ا ا | 0 | 0376 | 0 | +.0004 | +.0012 | +.0034 | +.0054 | +.0067 | +.0071 | 0 | +.0019 | +.0059 | | +.0269 | | | | | | | <u></u> | | R _X R _Y | 0376 | 0368 | +.0540 | +.1962 | +.2885 | +.3395 | +.3557 | | | | | | | | | | | | | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 12/ | 0.4 | +.1041 | +.0142 | +.0094 | +.0054 | 0004 | 0041 | 0060 | 0067 | | +.0018 | | 0013 | | | | | | | | | 0.3 | +.2490 | +.0282 | +.0162 | +.0090 | 0012
0022 | ~.007 3
~.0082 | 0105
0111 | 0114 | | +.0030 | | 0029
0045 | | | | | | | | | 0.1 | +.1921 | +.0176 | +.0096 | +.0041 | 0020 | 0046 | 0055 | 0058 | | +.0016 | 0002 | 0029 | 0045 | | | | | | | 9/p | 0.05 | | +.0077 | +.0041 | +.0017 | 0002 | 0005 | 0003 | 0002 | | +.0011 | | | | | | | | | | | 0 | 0355 | 0 | +.0004 | | | | | | 0 | +.0019 | +.0059 | +.0161 | +.0247 | +.0301 | +.0319 | | | | | — | | R _X R _Y | 0355 | 0159 | +.0675 | | +.2707 | | | <u> </u> | | | | r _ | | - | | | | | | 0.5 | 0 | 0 | 0 | 0 | 0 - 0000 | 0 - 0033 | 00 4 5 | 0 0048 | 0 | 0 | 0 | - 0010 | | | | | | | | 5/8 | 0.4 | +.1763 | +.0112 | | | 0009 | 0033
0057 | ±.0045
±.0075 | | | +.0012 | | 0019
0037 | | | | | | | | | | +.2120 | | | +.0049 | 0025 | 0060 | 0074 | 0077 | | +.0018 | 0005 | 0047 | 0078 | | | | | | | " | 0.1 | +.1495 | +.0117 | | | 0016 | 0027 | 0029 | 0030 | +.0023 | | 0004 | 0019 | 0025 | | | | | | | 9/p | 0.05 | +.0601 | +.0049 | +.0024 | +.0009 | +.0001 | +.0004 | +.0007 | +.0009 | +.0010 | +.0008 | +.0013 | +.0037 | +.0063 | +.0080 | +.0086 | | | | | | 0 | 0324 | 0 | +.0004 | | +.0029 | - | +.0051 | +.0054 | 0 | +.0019 | +.0056 | +.0146 | +.0215 | +.0257 | +.0271 | | | | | \vdash | | R _x | 0324 | +.0006 | +.0781 | + 1882 | +.2497 | +. 2798 | +.2888 | | | | _ | _ | | | | | | | | 0.5 | 0
+.0860 | +.0085 | +.0048 | +.0021 | 00II | 0026 | 00 3 2 | 0
0033 | +.0017 | 0
+ 0008 | 0
0002 | 0021 | 0
0037 | 0
0046 | 0
00 49 | | | | | 3/4 | 0.3 | +. 1545 | +.0144 | +.0078 | +.0031 | 0021 | 0043 | 0052 | 0053 | | +.0012 | 0005 | 0039 | 0065 | 0081 | 0086 | | | | | 111 | 0.2 | +.1807 | +.0149 | +.0075 | +.0025 | 0025 | 0043 | 0048 | 0049 | +.0030 | +.0010 | 0010 | 0045 | 0069 | 0083 | 0087 | | | | | ام ا | 0.1 | +.1218 | +.0082 | +.0035 | +.0008 | 0013 | 0016 | 0015 | 0015 | +.0016 | +.0004 | 0005 | - .001 3 | 0013 | 0011 | 0010 | | | | | 0 | 0.05 | +.0459 | +.0034 | +.0014 | +.0005 | | +.0007 | +.0011 | +.0012 | +.0007 | | +.0014 | | | | +.0082 | | | | | | 0 | - 0294
Ry | 0 | +.0004 | +.0011 | +.0026 | | +.0043 | | 0 | +.0019 | +.0053 | +.0129 | +.0183 | +.0213 | +.0223 | | | | | - | 0.5 | R _X O | 0294
0 | +.0 34
0 | +.0861 | +. 1894
0 | +.2278
0 | +.2491 | +.2551
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0.4 | +.0758 | +.0065 | +.0033 | +.0011 | 0011 | 0020 | 0022 | 0023 | +.0013 | +.0005 | 0004 | 0021 | 0034 | ~.0042 | 0045 | | | | | 2/8 | 0.3 | | +.0108 | | | 0020 | 0033 | 0035 | | +.0022 | | 0009 | 0038 | 0059 | 007ı | 0075 | | | | | | 0.2 | +.1560 | +.0111 | +.0049 | +.0011 | 0022 | 003 I | 0032 | 0032 | +.0022 | +.0005 | 0012 | 0041 | 0059 | 0069 | 0072 | | | | | | 0.1 | +.1028 | +.0060 | +.0022 | +.0002 | 0010 | 0010 | 0008 | 0007 | +.0012 | +.0002 | 0005 | 0008 | 0006 | 0003 | 0002 | | | | | 0/p | | +.0371 | +.0024 | | +.0003 | | +.0008 | +.0011 | +.0012 | | +.0006 | +.0013 | +.0037 | +.0057 | +.0069 | +.0073 | | | | | | 0 | 0266
R _x R _y | 0
0266 | +.0004 | +.0010 | | +.0031 | +.0035 | +.0036 | 0 | +.001 9 | +.0050 | +.0112 | +.0153 | +.0175 | +.0181 | | | | | | 0.5 | <u>*</u> 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | | | | | | 0.4 | +.0670 | +.0050 | | | 0011 | 0015 | 0016 | | +.0010 | | 0005 | 0020 | 0031 | 0037 | 0039 | | | | | [-] | 0.3 | +.1190 | +.0083 | +.0036 | +.0006 | 0019 | 0025 | 0025 | 0024 | +.0017 | +.0003 | 0011 | 0035 | 0052 | 0061 | 0064 | | | | | " | 0.2 | +. 1366 | +.0084 | +.0033 | +.0002 | 0019 | 0023 | 0022 | 0021 | _ | +.0002 | 0013 | 0036 | 0050 | 0057 | 0059 | | | | | 1% | 0.1 | +.0889 | | +.0014 | 0001 | 0007 | 0006 | 0004 | 0003 | | +.0001 | 0005 | 0006 | 0003 | | +.0001 | | | | | | 0.05 | 0241 | +.0018 | | | | | +.0011 | +.0011 | +.0004 | +.0005 | + 0046 | + 0098 | + 0128 | +.0143 | +.0148 | | | | | | Ť | Ry | 0241 | +.0311 | | +.1614 | +.1877 | +.1971 | +. 1994 | | | | | | | | | | | | - | - | - a | → | | | | | | | | | | ļ | | | | | | | | | Moment = (Coefficient)(pa ²) Reaction = (Coefficient)(pa) R_x R_y R_y R_y | | | | | | | | | | - x | | | | | | | | | | 0 | 7777 | 1111111 | 1 | . Х | p->- | | | | | | | PC | SITIVE | SIGN C | ONVENT | ION | | | | Figure 35.—Plate fixed along four edges, moment and reaction coefficients, Load-X, uniformly varying load, p=0 along y=b/2. | _ | 7 | | T - | | | | | | | T | | | | | | | |---------------|-----------------|---------------------------------------|----------------|----------------------|-------------|------------------------|----------------|----------|----------|----------|--------|--------------|-------------|------------------|--------------|---------------| | | V/ | - x/ | 1 | T | , | M _x | | | - | ļ | | | My | | | | | <u> </u> | у/ _b | | - | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | | 1 | 0.5 | +.1988 | | + | | + | + | | -+ | +.0032 | +.0015 | +.0002 | 0013 | 0015 | 0010 | ō | | \ w | 0.4 | +.1989 | + | +.0073 | | | + | †··· | + | | + 0015 | + | + | · | | 0 | | E/ | 0.2 | +.1989 | | | | + · · | + | | + | + | +.5014 | + | | 0016 | 0010 | 0 | | "_ | 0 1 | +.1858 | + | +.0051 | | | | + | + | | +.0013 | + | + | | + | 0 | | 1% | 0.05 | +.1327 | +.0077 | + | + | - | + | + | 0 | | + 0008 | 0004 | + | - | + | 0 | | | 0 | 0137 | 0 | +.0002 | +.0006 | +.0012 | + | +.0008 | | 1-0 | +.0011 | · | | 0007 | | 0 | | | ļ | R _X R _y | 0137 | +.0307 | +.0816 | +.1278 | +.1137 | +.0649 | 0 | 1 | | 1 | 11,5551 | 1.0000 | 1.0040 | 0 | | | 0.5 | + 1991 | | +.0073 | | + | 0076 | 004F | 0 | +.0032 | +.0015 | +.0002 | 0013 | 0016 | 0010 | 0 | | 1/2 | 0.4 | +.1992 | + | +.0073 | | | + | | 0 | + 0032 | +.0014 | +.0001 | 0013 | 0016 | | 0 | | Į. | 0.3 | +.1994 | + | +.0071 | | + | | 1 | | | | +.0000 | | 0018 | 0011 | 0 | |
 q | 0.2 | | +.0147 | +.0062 | | | | 0040 | + | | | 0002 | | 0021 | 0014 | 0 | | 2 | 0.05 | | | + | + | 0016 | 0014 | | 0 | | | 0007 | | | | 0 | | - | 0 | 0201 | 0 | | | +.0014 | | | 0 | +.0011 | | | +.0002 | | | 0 | | L | | R _X R _y | 0201 | | | | +.1174 | | 0 | <u> </u> | | 11.0033 | 1.0072 | +.0075 | [+.0046] | | | | 0.5 | +.1997 | +.0160 | +.0072 | +.0008 | 0063 | 0075 | 0047 | 0 | +.0032 | +.0014 | +.0001 | - 0014 | - 0017 | - 0011 | | | | 0.4 | +.1997 | +.0159 | +.0071 | +.0007 | 0063 | 0074 | 0046 | 0 | | | +.0001 | 0015 | 0017 | 0011 | 0 | | 5/8 | 0.3 | | +.0153 | | | 0061 | 0069 | 0043 | 0 | +.0031 | | 0001 | | 0020 | | 0 | | li i | 0.2 | | +.0134 | | | 0053 | 0057 | 0034 | 0 | +.0027 | +.0009 | | | 0023 | 0014 | 0 | | م ا | 0.1 | | +.0084 | | | 0030 | 0028 | 0016 | 0 | +.0017 | | | 0015 | | 0007 | 0 | | 6 | | | +.0040 | | 0003 | 0009 | 0007 | + | 0 | | | +.0004 | | | | 0 | | | 0 | 0232
R _x R _y | 0 - 0272 | +.0003 | | +.0016 | | +.0010 | 0 | 0 | +.0015 | +.0040 | +.0078 | +.0079 | +.0048 | 0 | | - | _ | | +.0158 | | | +.1345
0063 | +.1188
0073 | | 0 | | | |
 | | | | | | | +.0155 | | | 0062 | 0071 | 0045 | 00 | | | +.0000 | + | | 0012 | 0 | | 34 | | | +.0146 | | | 0058 | 0064 | 0039 | 0 | +.0029 | | 0001
0003 | | 0020 | 0013 | 0 | | i l | | | +.0122 | | 0003 | 0047 | 0049 | 0029 | 0 | | | 0006 | | 0022 | 0014
0014 | 0 | | | 0. I | +. 1274 | +.0068 | +.0021 | 0006 | + | 0020 | | o | +.0014 | | 0006 | - +- | | 0003 | -0 | | % | 0.05 | +.0581 | +.0030 | +.0008 | 0002 | 0004 | 0002 | 0000 | 0 | - | | +.0007 | | | | \dashv | | Į. | 0 | 0243 | 0 | +.0003 | +.0008 | +.0016 | +.0016 | +.0010 | 0 | 1 | | +.0042 | | | +.0049 | - | | | $\overline{}$ | Rx Ry | | | | +.1358 | +.1193 | +.0674 | 0 | | | | | | | | | ŀ | | | +.0154 | | | 0061 | 0069 | 0043 | 0 | +.0031 | +.0013 | 0001 | 0018 - | 0022 | 0014 | 0 | | | | | +.0150 | + | | 0060 | 0067 | 0041 | 0 | +.0030 | | | 0019 | 0022 | 0014 | 0 | | % | | | +.0138 | | | 0054 | 0058 | 0035 | . 0 | +.0028 | | | | | 0015 | 0 | | 11 | $\overline{}$ | | +.0109 | | 0005 | | 0042 | 0024 | 0 | +.0022 | | | | | 0012 | | | % | | | +.0023 | | | 0017 | 0015 | 0008 | 0 | | | | 0003 + | | | _ 0 | | 0) | \rightarrow | 0245 | | +.0004 | | | +.0001 | +.0001 | 0 | | +.0005 | | | .0031 | | | | ı | | Ry | | +.0297 | | | | +.0673 | 0 | 0 1 | +.0018 | +.0044 | +.0083 + | .0083 | +.0050 | | | | $\overline{}$ | | +.0148 | | | | 0064 | 0039 | - | +.0030 | F.0011 | 0003 | 0021 | .0024 | 0016 | 0 | | [| | | +.0143 | | | | 0061 | 0037 | 0 | +.0029 | | | | | 0016 | | | - | | | +.0128 | | | | 0052 | 003ı | 0 | +.0026 | | 0006 - | | | 0015 | - | | | | | +.0098 | | | 0036 | | 0020 | 0 | +.0020 + | | | 0019 - | .0019 - | 0011 | 0 | | _ ` [| _ | | +.0046 | | | | | 0005 | 0 | +.0009 + | | 0001 4 | | | | 0 | | ۲ | | | +.0018 | | | | | | <u> </u> | | | +.0014 + | | | | 0 | | ⊢ | • | 0241 | | +.0004 -
+.0310 - | | +.0017 -
+.1366 - | | +.0010 | 0 | 0]+ | - 0018 | +.0045 | 0084 + | .0083 | 1.0050 | • | | ‡ | | | .0241] | 1.0310[| 0669 | T. 1306] | r. 11901 | +.0670 | 0 | | | | | | | | | Ĺ | | n> | -4 | | | | | | | | | | Y | | | | | | | • | Ì | | | | | | | | | | _ ∱ _ | | _ | | | 1 | | | 2 1 | | | | | | | | | | И | ٠. | <u>/</u> 6 | | | 1 | | | | | | | | | | | | М | 4 | \ | | | | 3 | | | | | | - 1 | Moment | = (Coeff | icient)(| pa²) | | -€ | R. | | | | | 1 | | | F | | | R | eaction | = (Coeff | icient)(| pa) | | • | 1/1 | R _v / | 7 | | | | | | | | | | | | | | | | 0 | 7/17 | - | X | | 1 | | | | | | | | | | | | ¥ | | √My | | | | 1 | m | m | ,¥¥ | -x | | | | | | | | w | • | . 1 | | | | <u> </u> | . , , , , , , | /// | | | | | | | | | | POS | ITIVE S | IGN CO | NVENTIO | N | | الخ | 1 | | V. | | | | | | | | | | | | | | | · | | पाग | ₹ | | | | | | | | | | | | | | | | | W | J | | | | | | | | | | | | | | Figure 36.—Plate fixed along four edges, moment and reaction coefficients, Load XI, uniformly varying load, p=0 along x=a/2. # Accuracy of Method of Analysis The finite difference method is inherently approximate. A factor directly affecting its accuracy is the closeness of spacing, hence the number, of grid points. In obtaining the solutions presented in this monograph, a maximum number of points was used, consistent with the objectives of the study and the capacity of the available electronic calculator. A few instances may be found where there appear to be irregularities in the orderly progression of the coefficients as the ratio a/b changes. Such instances are most likely to occur in the low values of the ratio where, to gain accuracy, the number of points used in the analysis was increased as a/b decreased. Although these inconsistencies are undesirable from an academic standpoint, they are not of sufficient magnitude to affect materially the usefulness of the results. As a general check on the finite difference method, problems for which "exact" solutions are known have been computed. The results indicate that for spacings comparable to those used in this study, errors in the maximum moments may be of the order of five percent. Such accuracy is considered to be satisfactory for design purposes. Percentage errors for small numerical values of the coefficients may, of course, be somewhat higher. For Case 5 a comparison is given in Table 2 Table 2.—Comparison of Coefficients of Maximum Bending Moment at the Center of a Uniformly Loaded Rectangular Plate Fixed Along Four Edges | | Values of I | M _z /pa² from | |--------------------------------------|---|---| | b/a | Timoshenko ¹ | Method of this
Monograph ² | | 1. 1
1. 2
1. 3
1. 4
1. 6 | $\begin{array}{c} -0.0264 \\ -0.0299 \\ -0.0327 \\ -0.0349 \\ -0.0381 \\ -0.0392 \end{array}$ | $ \begin{array}{r} -0.0269 \\ -0.0301 \\ -0.0329 \\ -0.0352 \\ -0.0384 \\ -0.0395 \end{array} $ | | 1.8 | $ \begin{array}{c c} -0.0332 \\ -0.0401 \\ -0.0407 \end{array} $ | -0.0333 -0.0404 -0.0410 | $^{^1}$ These values taken directly from page 228, Reference 1, with due regard for difference in sign conventions. 2 These values interpolated from the column for $\mu{=}0.3$ of the preceding table. between values found on page 228 of Reference 1 and directly equivalent values obtained by the method of this monograph. In this particular case, the relative differences are, for the most part, less than one percent. Comparisons have also been made with other existing results ² for full uniformly varying load and certain ratios of a/b. These indicated very good agreement. All coefficients have been computed to four decimal places for consistency and to indicate significant figures for many conditions which would have no significance to three decimal places. This should not be taken as an indication that the percentage accuracy is greater than noted above. # Appendix I ## An Application to a Design Problem This appendix illustrates use of the tabulated coefficients by an application to a typical design problem. Figure 37 shows essential dimensions and typical loads acting on an interior panel of a counterfort retaining wall. Both wall and heel slabs approximate the condition of a plate fixed along three edges and free along the fourth. The variations in thickness of the wall slab and the relatively great thickness of the heel slab compared with its lesser lateral dimension are both, perhaps to some degree, in violation of basic assumptions. Ignoring these, however, is done with the conviction that results obtained in this manner are more nearly correct than what might be determined by other available methods. Center line dimensions have been used for both slabs. The net loads, as determined from equi- librium conditions, have been broken into components similar to certain of the typical Loads I through XI. These are illustrated together with a table of their numerical values in Figure 37. It will be noted that for the wall slab, r=a/b=0.2. This requires interpolation on r for the various loads and in the case of p_s , interpolation both on r and the load. For the heel slab, r=a/b=1/2, and since both component loads act over the full area, no interpolation is required. For illustrative purposes, moments have been computed along the assumed lines of support for both the wall and heel slabs. Where interpolation was required to obtain the moment coefficients, second degree interpolation was used. The moment coefficients and actual computed moments are given in Tables 3 through 6. COUNTERFORT HEEL SLAB - INTERIOR PANEL IDEALIZED DIMENSIONS AND COMPONENT LOADS COMPONENT LOADS FIGURE 37.—Counterfort wall, design example. Table 3.— M_{\star} for Heel Slab at Supports | Values | Values of pb²→ | | coefficients | Moments | (foot-kips) | | | |--------------|----------------|----------------------|----------------------|------------------|---|--------------------------|--| | | | 1118.5 | -1032.3 | | | Total moment (foot-kips) | | | <u>x</u> a | y
b | p_{u} | ₽v | $ m M_u$ | M _v | , | | | 0 | 1.0 | +0.0852 | +0.0151 | +95.30 | -15.59 | +79.7 | | | 0 | 0. 6 | +0.0807 $+0.0712$ | +0.0216 $+0.0273$ | +90.26 $+79.64$ | $ \begin{array}{r} -22.30 \\ -28.18 \end{array} $ | $+68.0 \\ +51.5$ | | | 0 | 0. 4
0. 2 | +0.0545 +0.0250 | $+0.0277 \\ +0.0160$ | +60.96
+27.96 | -28.59 -16.52 | $+32.4 \\ +11.4$ | | | 0 0. 2 | 0 | 0 + 0.0019 | $0 \\ +0.0014$ | 0 + 2.13 | $0 \\ -1.45$ | 0 + 0.7 | | | 0. 4
0. 6 | 0 | $+0.0050 \\ +0.0080$ | +0.0033
+0.0050 | $+5.59 \\ +8.95$ | -3.41 -5.16 | +2.2 +3.8 | | | 0.8
1.0 | 0 | $+0.0100 \\ +0.0107$ | +0.0061
+0.0065 | +11.18 +11.97 | $ \begin{array}{r} -6.30 \\ -6.71 \end{array} $ | $+4.9 \\ +5.3$ | | | | | | | | | | | Table 4.—My for Heel Slab at Supports | Values | Values of pb²→ | | coefficients | Moments | (foot-kips) | | |------------|---------------------------------|---------|--------------|---------|----------------|-----------------------------| | | | 1118.5 | -1032.3 | | | Total moment
(foot-kips) | | <u>x</u> a | $\frac{\mathbf{y}}{\mathbf{b}}$ | Pu | pv | Mu | Μ _v | | | 0 | 1. 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0.8 | +0.0161 | +0.0043 | +18.01 | -4.44 | +13.6 | | 0 | 0. 6 | +0.0142 | +0.0055 | +15.88 | -5. 68 | +10.2 | | 0 | 0. 4 | +0.0109 | +0.0055 | +12.19 | -5.68 | +6.5 | | 0 | 0. 2 | +0.0050 | +0.0032 | +5.59 | -3.30 | +2.3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0. 2 | 0 | +0.0094 | +0.0068 | +10.51 | -7.02 | +3.5 | | 0.4 | 0 | +0.0252 | +0.0167 | +28.19 | 17. 24 | +11.0 | | 0.6 | 0 | +0.0399 | +0.0252 | +44.63 | -26.01 | +18.6 | | 0.8 | 0 | +0.0499 | +0.0307 | +55.81 | -31.69 | +24.1 | | 1. 0 | 0 | +0.0534 | +0.0325 | +59.73 | -33.55 | +26.2 | | | | | | | | | ## MOMENTS AND REACTIONS FOR RECTANGULAR PLATES TABLE 5.- Mx for Wall Slab at Supports | Valu | es of | | Moment |
coefficients | | | M | oments | | | |---|---|--|---|---|--|---|---|--|--|--| | pb | 2-> | -985.5 | 157. 7 | 1905. 4 | 1392. 9 | | | ot-kips) | | Total
moment
(foot-kips) | | X
a | y
b | p₩ | Pq | p _e | p _e | M _w | Mq | M. | M, | (100t-kips) | | 0
0
0
0
0
0
0
2
0.2
0.4
0.6 | 1. 0
0. 8
0. 6
0. 4
0. 2
0
0
0 | -0.0000
+0.0000
+0.0000
+0.0009
+0.0032
0
+0.0002
+0.0005
+0.0007
+0.0009 | +0. 0133
+0. 0131
+0. 0134
+0. 0133
+0. 0103
0
+0. 0003
+0. 0009
+0. 0013
+0. 0016 | +0.0012
+0.0028
+0.0054
+0.0079
+0.00079
0
+0.0003
+0.0007
+0.0011
+0.0014 | +0.0004
+0.0012
+0.0034
+0.0068
+0.0075
0
+0.0003
+0.0006
+0.0011
+0.0014 | +0.00
-0.00
-0.00
-0.89
-3.15
0
-0.20
-0.49
-0.69 | +2. 10
+2. 07
+2. 11
+2. 10
+1. 62
0
+0. 05
+0. 14
+0. 21 | +2. 29
+5. 34
+10. 29
+15. 05
+15. 05
0
+0. 57
+1. 33
+2. 10 | +0. 56
+1. 67
+4. 74
+9. 47
+10. 45
0
+0. 42
+0. 84
+1. 53 | +5. 0
+9. 1
+17. 1
+25. 7
+24. 0
0
+0. 8
+1. 8
+3. 2 | | 1. 0 | ő | +0.0010 | +0 0018 | +0.0015 | +0.0014 | -0. 99
-0. 99 | +0. 25
+0. 28 | +2.67
+2.86 | + 1. 95
+ 2. 09 | +4.0
+4.2 | Table 6.—My for Wall Slab at Supports | Value | es of | | Moment | coefficients | | | Me | oments | | | |--------|----------|----------------|---------|--------------|----------------|----------------|-------|----------|--------|--------------------------------| | pb² | → | 985. 5 | 157. 7 | 1905. 4 | 1392. 9 | | | ot-kips) | | Total
moment
(foot-kips) | | x
a | у
Б | p _w | Pq | p• | p ₄ | M _w | Mq | M. | M. | (1000 21,00) | | 0 | 1. 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0.8 | -0.0000 | +0.0026 | +0.0005 | +0.0002 | +0.00 | +0.41 | +0.95 | +0.28 | +1.6 | | 0 | 0. 6 | +0.0000 | +0.0027 | +0.0011 | +0.0007 | -0.00 | +0.43 | +2.10 | +0.98 | +3.5 | | 0 | 0. 4 | +0.0002 | +0.0026 | +0.0016 | +0.0014 | -0.20 | +0.41 | +3.05 | +1.95 | +5.2 | | 0 | 0. 2 | +0.0006 | +0.0020 | +0.0016 | +0.0015 | -0.59 | +0.32 | +3.05 | +2.09 | +4.9 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0. 2 | 0 | +0.0011 | +0.0015 | +0.0014 | +0.0014 | -1.08 | +0.24 | +2.67 | +1.95 | +3.8 | | 0. 4 | 0 | +0.0025 | +0.0041 | +0.0036 | +0.0036 | -2.46 | +0.65 | +6.86 | +5.01 | +10.1 | | 0. 6 | 0 | +0.0036 | +0.0066 | +0.0056 | +0.0055 | -3.55 | +1.04 | +10.67 | +7.66 | +15.8 | | 0.8 | 0 | +0.0043 | +0.0082 | +0.0069 | +0.0068 | -4.24 | +1.29 | +13.15 | +9.47 | +19.7 | | 1. 0 | 0 | +0.0046 | +0.0088 | +0.0074 | +0.0072 | -4.53 | +1.39 | +14.10 | +10.03 | +21.0 | | | | | | | | | | | | | # Appendix II ### The Finite Difference Method #### Introduction The bending of thin elastic plates or slabs subjected to loads normal to their surfaces has been studied by many investigators. have been solved by exact or approximate means, and these results are available. (See, for instance, have been solved by exact approximate methods are frequently difficult to apply except to structures where some symmetry exists and where a simple loading is used. The finite difference method, however, is readily adaptable to rectangular plates having any of the usual edge conditions and subjected to any loading. In Denmark, as early as 1918, N. J. Nielsen applied the finite difference method to the solution of plate problems. In his book 4 he has analyzed the problem in considerable detail and has given numerical solutions for a number of cases. H. Marcus published an excellent book 5 in Germany in 1924 on this subject in which he included numerous examples. In the United States, Wise, Holl, and Barton 6.7 8 have contributed to the literature of finite difference solutions for rectangular plates, and Jensen ⁹ has extended the method to provide a useful tool in the analysis of skew slabs. #### General Mathematical Relations The partial differential equation, frequently called Lagrange's equation, which relates the rectangular coordinates, the load, the deflections, and the physical and elastic constants of a laterally loaded plate, is well known. Its application to the solution of problems of bending of plates or slabs is justified if the following conditions are met: (a) the plate or slab is composed of material which may be assumed to be homogeneous, isotropic, and elastic: (b) the plate is of /a uniform thickness which is small as compared with its lateral dimensions; (c) the deflections of the loaded plate are small as compared with its thickness. The additional differential expressions relating the deflections to the boundary conditions, moments, and shears are perhaps equally well known. (See, for instance,1.) They will therefore only be stated here, using the notation and sign convention shown in Figure 38. GRID POINT DESIGNATION SYSTEM ``` Intensity of pressure, normal to the plane of the plate. Lateral dimensions of the plate, Lateral dimension in the y direction of the grid elements of the plate. Ratio of lateral dimensions of the grid elements. Deflection of the middle surface of the plate, normal to the XOY plane. Rectangular coordinates in the plane of the plate. Z, N, E, ... NE, NN Designation of active grid points. Also used to represent the value of the deflection of the plate at the point so lettered. Designation of additional points on sub-divided grid. Subscripts used to indicate directions normal and tangential to an edge. Mx, My Bending moment per unit length acting on planes perpendicular to the x and y axes respectively. Twisting moment per unit length in planes perpendicular to the x and y axes respectively. Shearing force per unit length acting normal to the plane of the plate, in planes normal to the x and y axes respectively. Shearing reactions per unit length acting normal to the plane of the plate, in planes normal to Rx, Ry the x and y axes respectively. Concentrated load acting at a grid point; positive in the same direction as p. Concentrated reaction acting at a supported grid point; positive direction opposite to that of \mathfrak{p}. Young's modulus for the material of the plate Moment of inertia per unit length of a section of the plate. Poisson's ratio for the material of the plate. Flexural rigidity per unit length of the plate; D = EI/(1-\mu^2). Difference quotient operator: \nabla^4 w = \frac{\Delta^4 w}{\Delta x^4} + 2 \frac{\Delta^4 w}{\Delta x^2 \Delta y^2} + \frac{\Delta^4 w}{\Delta y^4} ``` #### NOTATION FIGURE 38.—Grid point designation system and notation. APPENDIX II 51 Partial differential equation: $$\frac{\partial^4 \mathbf{w}}{\partial \mathbf{x}^4} + 2 \frac{\partial^4 \mathbf{w}}{\partial \mathbf{x}^2 \partial \mathbf{y}^2} + \frac{\partial^4 \mathbf{w}}{\partial \mathbf{y}^4} = \frac{\mathbf{p}(\mathbf{x}, \mathbf{y})}{\mathbf{D}}.$$ (1) Fixed edge conditions: $$w=0,$$ (2.01) $$\frac{\partial \mathbf{w}}{\partial \mathbf{n}} = 0$$ (2.02) Hinged edge conditions: $$w=0,$$ (3.01) $$\frac{\partial^2 \mathbf{w}}{\partial \mathbf{n}^2} + \mu \, \frac{\partial^2 \mathbf{w}}{\partial \mathbf{t}^2} = 0 \cdot \tag{3.02}$$ Free edge conditions: $$\frac{\partial^2 \mathbf{w}}{\partial \mathbf{n}^2} + \mu \frac{\partial^2 \mathbf{w}}{\partial \mathbf{t}^2} = 0, \tag{4.01}$$ $$\frac{\partial^3 \mathbf{w}}{\partial \mathbf{n}^3} + (2 - \mu) \frac{\partial^3 \mathbf{w}}{\partial \mathbf{n} \partial \mathbf{t}^2} = 0$$ (4.02) Free corner conditions: $$\frac{\partial^2 \mathbf{w}}{\partial \mathbf{n}^2} = 0$$ (both directions), (5.01) $$\frac{\partial^3 \mathbf{w}}{\partial \mathbf{n}^3} + (2 - \mu) \frac{\partial^3 \mathbf{w}}{\partial \mathbf{n} \partial \mathbf{t}^2} = 0$$ (both directions), (5.02) $$\frac{\partial^2 \mathbf{w}}{\partial \mathbf{n} \partial \mathbf{t}} = 0. \tag{5.03}$$ Bending moments: $$M_x = D \left[\frac{\partial^2 w}{\partial x^2} + \mu \frac{\partial^2 w}{\partial v^2} \right], \quad (6.01)$$ $$M_{y} = D \left[\frac{\partial^{2} w}{\partial v^{2}} + \mu \frac{\partial^{2} w}{\partial x^{2}} \right]. \tag{6.02}$$ Twisting moments: $$M_{xy} = M_{yx} = D(1 - \mu) \frac{\partial^2 w}{\partial x \partial y}.$$ (7) Shears: $$V_x = -D \left[\frac{\partial^3 w}{\partial x^3} + \frac{\partial^3 w}{\partial x \partial y^2} \right],$$ (8.01) $$V_{y} = -D \left[\frac{\partial^{3} w}{\partial y^{3}} + \frac{\partial^{3} w}{\partial x^{2} \partial y} \right]$$ (8.02) In the above expressions the partial derivatives with respect to n indicate rates of change in a direction normal to the edge, and those with respect to t indicate rates of change tangential to the edge. A solution to any specific problem consists of determining a deflection surface which satisfies the basic equation (1), and the appropriate sets of boundary conditions (2.01) through (5.03). The moments and shears required for design purposes may then be computed from (6.01) through (8.02). In general, it is difficult to obtain an analytical expression for a deflection surface which satisfies all of these
conditions. If, however, an approximate solution is acceptable, it is always possible in analyzing a rectangular plate to determine a set of deflections for a finite number of discrete points such that approximate relations corresponding to (1) through (5.03) are satisfied. From these deflections it is possible to compute moments, reactions, and shears at the selected points, using relations similar to (6.01) through (8.02). The approximate relations referred to above are obtained by replacing the partial derivatives by corresponding finite difference quotients. Such relations are simplest if the discrete points determined by values of the independent variables are equally spaced with respect to both variables. However, in this application it will be advantageous for the relations to be developed on the more general basis of having the equal spacing in one coordinate direction bear a given ratio to the spacing in the perpendicular direction. Figure 38(a) represents a portion of the interior of a plate subdivided by grid lines into rectangular grid elements. The grid lines are spaced h units apart in the y direction and rh units apart in the x direction. The intersections of the grid lines will be referred to as grid points. Certain of these, lettered for identification, will be spoken of as active points, and the central point of the active group will be called the focal point. For simplicity in writing the equations, the identifying letters for each active point will also be used to represent the value of the deflection, w, of the middle surface of the plate at that point. The double letters refer in every case to the deflection at the individual point so lettered; they do not indicate products of deflections at points designated by only one letter. Based on the usual methods of finite differences, 10 the difference quotient relations required in this development can be written directly and are given below. All of the difference quotients are given with reference to the focal point, lettered Z. $$\frac{\Delta w}{\Delta x} = \frac{1}{2rh} (E - W), \qquad (9.01)$$ $$\frac{\Delta^2 w}{\Delta x^2} = \frac{1}{r^2 h^2} (E - 2Z + W), \qquad (9.02)$$ $$\frac{\Delta^3 w}{\Delta x^3} = \frac{1}{2r^3h^3} (EE - 2E + 2W - WW), \quad (9.03)$$ $$\frac{\Delta^4 w}{\Delta x^4} = \frac{1}{r^4 h^4} (EE - 4E + 6Z - 4W + WW), (9.04)$$ $$\frac{\Delta w}{\Delta y} = \frac{1}{2h} (N - S), \qquad (9.05)$$ $$\frac{\Delta^2 w}{\Delta v^2} = \frac{1}{h^2} (N - 2Z + S), \qquad (9.06)$$ $$\frac{\Delta^3 w}{\Delta y^3} = \frac{1}{2h^3} (NN - 2N + 2S - SS), \qquad (9.07)$$ $$\frac{\Delta^4 w}{\Delta y^4} = \frac{1}{h^4} (NN - 4N + 6Z - 4S + SS), \quad (9.08)$$ $$\frac{\Delta^2 w}{\Delta x \Delta y} = \frac{1}{4 \text{rh}^2} \text{ (NE-NW+SW-SE), (9.09)}$$ $$\frac{\Delta^{3}w}{\Delta x^{2}\Delta y} = \frac{1}{2r^{2}h^{3}} (NE - 2N + NW - SE + 2S - SW),$$ (9.10) $$\frac{\Delta^3 \mathbf{w}}{\Delta \mathbf{x} \Delta \mathbf{y}^2} = \frac{1}{2 \mathrm{rh}^3} \text{ (NE} - 2 \mathrm{E} + \mathrm{SE} - \mathrm{NW} + 2 \mathrm{W} - \mathrm{SW}),$$ (9.11) $$\frac{\Delta^{4}w}{\Delta x^{2}\Delta y^{2}} = \frac{1}{r^{2}h^{4}} (NE - 2E + SE - 2N + 4Z - 2S + NW - 2W + SW). (9.12)$$ The approximate counterparts of the basic relations (1) through (8.02) may now be written. For instance if ∇^4 w is used to represent the difference quotient equivalent to the left-hand member of equation (1), and the partial derivatives are replaced by their corresponding difference quotients, (9.04), (9.08), and (9.12), there results: $$\nabla^{4}w = \frac{1}{r^{4}h^{4}} [EE + WW + r^{4}(NN + SS) + 2r^{2}(NE + SE + SW + NW)]$$ $$-4(1+r^2)(E+W)-4r^2(1+r^2)(N+S)$$ $+2(3+4r^2+3r^4)Z$]. (10) This may be considered as an operator, and the portion within the brackets can be conveniently portrayed as an array of coefficients. This expression, multiplied by h⁴, is shown in array form at (a) of Figure 39. Each element of the array represents the coefficient of the deflection of one of the active grid points in a group similar to that shown at (a) of Figure 38. The location of the coefficients in the array is congruent to the physical locations of the points and the heavily outlined coefficient applies at the focal point—the point for which the relation is to be determined. Since the solution deals with discrete points, the distributed load intensity p in the right-hand member of (1) is replaced by an average intensity P/rh^2 at each of the interior grid points. Here P represents a concentrated load whose magnitude at any grid point is a function of the distribution of p on the four adjoining grid elements. If each of these elements is considered as an infinitely rigid plate supported at its four corners, then the force P_z , at the focal point, is equal in magnitude and opposite in direction to the sum of the reactions at all corners common to Z. This can be expressed mathematically as: $$P_z = P_{zNE} + P_{zSE} + P_{zSW} + P_{zNW}$$ (11) in which $P_{z_{NE}}$ represents the contribution from the grid element Z-N-NE-E and similarly for the other right-hand members. Thus it is seen that the concentrated loads P_z are the static equivalent of p. It can be shown, if p varies linearly—a usual condition for structures—and if this variation is constant over the four grid elements adjoining any focal point Z, that the magnitude of the statically equivalent average load is: $$P_z/rh^2 = (1/6)(p_N + p_E + p_S + p_W + 2p_z),$$ (12) where p_N represents the intensity of p at point N, etc. The approximate counterpart of (1) may now be written: $$\nabla^4 \mathbf{w} = \frac{\mathbf{P_z}}{\mathbf{Drh^2}}.$$ (13) APPENDIX II Multiplying both sides of (13) by h⁴ and replacing ∇⁴w by the deflections as given by (10) leads to: $$\frac{1}{r^{4}}[EE+WW+r^{4}(NN+SS) + 2r^{2}(NE+SE+SW+NW) - 4(1+r^{2})(E+W)-4r^{2}(1+r^{2})(N+S) + 2(3+4r^{2}+3r^{4})Z] = \frac{P_{z}}{rh^{2}} \frac{h^{4}}{D}. \quad (14)$$ This is the general load-deflection relation for an interior point. It is written at (a) of Figure 39 in the convenient array form previously described. This general form of the equations has been used for the special cases which include the boundary conditions and, in fact, for all of the relations connecting the deflections with load, moments, reactions, and shears. These load-deflection equations establish a linear relation between the load at the focal point and the unknown deflections of the plate at that and the other active grid points. It is these linear equations which are to be solved simultaneously to determine the approximate deflections of the plate at the grid points. Equation (14) may be derived directly by a second method which considers equilibrium of certain elements of the plate. Referring to the subdivided grid of Figure 38(b), consider the rectangular element ne-se-sw-nw with center at Z. Equilibrium of forces normal to the plate requires that $$(V_{x_a}-V_{x_w})h+(V_{v_a}-V_{v_a})rh+P_z=0.$$ (15) For the similar element with center at e, equilibrium of moments about the center line ne-se requires that $$\begin{split} (M_{x_{\rm E}} - M_{z_{\rm Z}})h + (M_{y_{x_{\rm ne}}} - M_{y_{z_{\rm se}}})rh \\ + (V_{x_{\rm E}} + V_{x_{\rm Z}}) \; \frac{rh^2}{2} = 0 \cdot \end{split}$$ However, if the elements are sufficiently small, $$\frac{1}{2}\left(\mathbf{V_{x_E}} + \mathbf{V_{x_Z}}\right)$$ may be replaced with V_{x_a} so that $$(M_{x_E}-M_{x_Z})h+(M_{y_{x_{n_e}}}-M_{y_{x_{g_e}}})rh+V_{x_e}rh^2=0.$$ (16.01) In like manner for elements with centers at w, n, and s: 53 $$\begin{split} (M_{x_{Z}}-M_{x_{W}})h+(M_{yx_{n_{W}}}-M_{yx_{n_{W}}})rh+V_{x_{W}}rh^{2}=0,\\ (16.02)\\ (M_{y_{N}}-M_{y_{Z}})rh+(M_{xy_{n_{e}}}-M_{xy_{n_{W}}})h+V_{y_{n}}rh^{2}=0,\\ (16.03)\\ (M_{y_{Z}}-M_{y_{N}})rh+(M_{xy_{n_{e}}}-M_{xy_{n_{W}}})h+V_{y_{e}}rh^{2}=0. \end{split}$$ If equations (15) and (16.01) through (16.04) are combined to eliminate the shears, noting at the same time that $M_{xy}=M_{yx}$, there results $$\begin{split} \frac{1}{r} \left(M_{x_{E}} - 2M_{x_{Z}} + M_{x_{W}} \right) + 2(M_{xy_{n_{e}}} - M_{xy_{n_{w}}} + M_{xy_{s_{w}}} \\ - M_{xy_{s_{e}}} \right) + r(M_{y_{N}} - 2M_{y_{Z}} + M_{y_{S}}) = P_{z}. \end{split} \tag{17}$$ An approximation to each moment in terms of deflections is obtained if the partial differentials of the definitions (6.01); (6.02), and (7) are replaced by their proper difference quotients corresponding to (9.02), (9.06), and (9.09). For instance, $$M_{x_{Z}} = \frac{D}{r^{2}h^{2}} [E - 2Z + W + \mu r^{2}(N - 2Z + S)]$$ (18) and $$M_{xy_{n_e}} = \frac{D(1-\mu)}{rh^2} [NE-N+Z-E]$$ (19) Substituting these and corresponding relations for the other moments into (17), and multiplying both sides by h^2/rD gives $$\begin{aligned} &\frac{1}{r^4} \left(WW - 4W + 6Z - 4E + EE \right) + \frac{2}{r^2} \left(NW - 2N \right. \\ &\quad + NE - 2W + 4Z - 2E + SW - 2S + SE \right) \\ &\quad + (NN - 4N + 6Z - 4S + SS) = \frac{P_z h^2}{rD} \end{aligned}$$ which, with some rearrangement, is the same as (14). This second method is easily adapted to deriving expressions involving nonuniform spacings, moment-free boundaries, etc. It was applied to obtain all of the load-deflection arrays shown in Figures 39 through 59, which were required in the solution of the problems covered by this monograph. Where boundary conditions involve a reaction, the load P may be replaced by the net load, (P-R), which is the difference between load and reaction. Note that R represents a concentrated force whose positive direction is opposite to that of p. R_x and R_y , on the other hand, represent intensities of shearing reactions whose positive directions conform to V_x and V_y . Relations connecting the deflections with moments and with shears are given in Figures 60 through 64. It should be noted that shears computed by finite difference methods are inherently less accurate than moments. This is because the shears are functions of odd numbered difference quotients which are determined by a grid
spacing double the value found in the even numbered quotients which define the moments. #### Application to Plate Fixed Along Three Edges and Free Along the Fourth As an example of the use of this general method, its application to the problem of a plate fixed along three edges and free along the fourth is given below. The a/b ratio of 1/4 has been used to illustrate use of the 20 supplementary equations. Loads I, II, and IV only are included. The plate is divided into grid elements and the grid points numbered systematically for identification. Layout of Plate, Figure 66, shows the method used in this case. Because of symmetry of the plate and loading about the line x=a, points which are symmetrical about this line will have equal deflections and are, therefore, numbered alike. This reduces considerably the number of unknown deflections to be determined. With r=1/4 and $\mu=0.2$, the left-hand side of each of the load-deflection relations yields an array of numerical coefficients corresponding to the type of point it represents. These values have been computed for typical points and they are shown in Figure 65. They are used in writing the left-hand members of the simultaneous equations. Solution of these equations determines the deflections. One equation must be written for each grid point having an unknown deflection. The equation corresponding to any point is formed as follows: a. Select the array of load-deflection coefficients having edge conditions and - spacings which correspond to those of the given point. - b. Orient the focal point of this array at the given point. - c. Multiply the unknown which represents the deflection of each active grid point by the corresponding coefficient. - d. Equate the sum of these products to the load term for the given point. For example, for Point 45 the array at (b) of Figure 65 must be used in order that the free edges correspond properly. Then, following the procedure outlined above, the left-hand member of the equation for Point 45 is $$+256w_{25}+32w_{34}-1088w_{35}+28.8w_{36}+w_{43}$$ $-68w_{44}+(1669+256)w_{45}-59.6w_{46}$ $+32w_{54}-1088w_{55}+28.8w_{56}$ Noting that $R_z=0$ along the free edge it is seen that in this case the general expression for the right-hand terms is always $(P_z/rh^2)(h^4/D)$. Since these load terms are to be expressed as coefficients of ph^4/D , it remains to evaluate the P_z/rh^2 in terms of p for each point and each loading. At Point 45 the right-hand members for Loads I and IV may be obtained by direct application of (12). However, a discontinuity occurs in the magnitude of Load II within the grid elements adjoining Point 45. For this reason, the more general method expressed by (11) must be employed. In particular for Load II, the elements 45–35–36–46 and 45–46–56–55 carry no load, and accordingly they make no contribution to P_{45} . The elements 45–44–34–35 and 45–55–54–44 each carry an equal portion of the uniform load. Under the assumptions leading to (11) it is found, by statics, that the contribution of each of these elements to P_{45} is $ph^2/144$. Hence, $P_{45}=ph^2/72$ and $P_{45}/rh^2=p/18$. The complete set of 30 equations and the right-hand (load) terms are shown as two matrices in Figure 66. Simultaneous solution of the equations establishes a set of deflections for each of the 30 grid points, corresponding to each load. These results are tabulated in the upper portion of Figure 67. The 20 supplementary equations used to determine the deflections of the row of points at $y=\frac{1}{4}h$ are set up in a similar manner. Equations are written for each point of the 3-, 2-, 1-, and 7-rows (see Figure 68). However, in writing equations for the 3- and 2-rows use is made of the previously computed deflections for the 4- and 5-rows. In addition, the solution of the 20 equations gives new and improved values of deflections for the 3-, 2-, and 1-rows. For Point 42, for example, the array (f) of Figure 65 is used to conform with the spacing of the grid points involved. The equation for Load I is $$\begin{aligned} -28w_{21} + 210w_{22} + 10w_{23} + 176w_{31} - 936w_{32} \\ -8w_{33} + \frac{64}{3}w_{47} - 364w_{41} + \frac{5057}{3}w_{42} \\ +176w_{51} - 936w_{52} - 8w_{53} = \frac{3}{4}\frac{ph^4}{D} - w_{44}. \end{aligned}$$ Substituting for Point 44, its deflection as determined from the 30 equations gives, for the right-hand member $$(0.75 - 0.100572) \frac{ph^4}{D} = 0.649428 \frac{ph^4}{D}$$ The complete set of 20 equations for Loads I, II, and IV is given in Figure 68. Solution of these gives the deflections shown on the lower portion of Figure 67. Where improved values of the deflection were obtained, the former ones have been discarded as indicated in the figure. Comparison of old and new values shows that they approach closely for the points where y/b=0.4. Having determined the deflections, reactions and moments may be computed by operating upon the deflections with the appropriate relations, typical samples of which are given in Figure 69. These numerical arrays were obtained similarly to those for the load-deflection relations, by inserting numerical values for r and μ in the proper general expressions of the referenced figures. To illustrate the method of computation of reactions and moments, an example of each (Load I, a/b=1/4) is given below. At Point 30, for instance, using array (f) of Figure 69, the reaction is: $$R_{30} = P_{30} + \frac{D}{h^2} (-32w_{27} - 16w_{31} + 128w_{37} - 32w_{47}).$$ Substituting numerical values for P₃₀ and the various deflections, this becomes $$\begin{split} R_{30} &= 0.03125 ph^2 + \left(\frac{D}{h^2}\right) \left(\frac{ph^4}{D}\right) \\ & [-(32)(0.004944) - (16)(0.021325) \\ & + (128)(0.007860) - (32)(0.009833)] \\ & = (0.03125 + 0.192016) ph^2 = 0.223266 ph^2. \end{split}$$ This represents a concentrated force acting at Point 30. Assuming that it is uniformly distributed over a distance rh, it can be expressed as an average shearing reaction per unit length $$R_{y_{30}} = R_{30}/rh = 0.893064ph$$ or in terms of b $$R_{y_{30}} = 0.178613 pb$$ which is in the units used in Figures 1 through 33. Similarly, for example, the bending moment M_x at Point 23 is computed using array (g) of Figure 69. Thus $$M_{x_{23}} = \frac{D}{h^2} (16w_{13} + 0.2w_{22} - 32.4w_{23} + 0.2w_{24} + 16w_{33}).$$ Again inserting numerical values $$\begin{split} \mathbf{M_{x_{23}}} = & \left(\frac{\mathbf{D}}{\mathbf{h}^2}\right) \left(\frac{\mathbf{p}\mathbf{h}^4}{\mathbf{D}}\right) [(16)(0.015283) \\ & + (0.2)(0.029914) - (32.4)(0.043935) \\ & + (0.2)(0.046526) + (16)(0.073156)] \\ & = 0.006818\mathbf{p}\mathbf{h}^2 = 0.000273\mathbf{p}\mathbf{b}^2. \end{split}$$ Upon completion of computation of the reactions, a partial check of the solution may be obtained from equilibrium considerations. For Load I, a/b=1/4, the total load on one-half of the plate is p(5h)(5h/4)=6.25 ph². The summation of the R/ph² column of Figure 70 should agree with this, and it is seen to be in error by something less than 0.015 percent. (a) INTERIOR POINT (b) POINT ADJACENT TO A FIXED X-EDGE (c) POINT ADJACENT TO A FIXED Y-EDGE #### (d) POINT ADJACENT TO A FIXED CORNER #### NOTES FIGURE 39.—Load-deflection relations, Sheet I. | | +(2-µ)r2 | $-2(2-\mu)r^2-2r^4$ | +2(1-µ)r2 | | | |----------|--------------------|---------------------|-----------|---|----------------------------------| | +1 | -4 - 4r2 | +5 + 812 + 514 | | = | $\frac{P}{rh^2} \frac{h^4}{D}$. | | <u> </u> | + 2 r ² | -4r2 - 4r4 | +(2-µ)r2 | | 7 11- 0 | | | | + r4 | | | | (0) POINT ADJACENT TO A MOMENT-FREE CORNER | - | | +(2-µ) r2 | -2(2-H)r2-2r4 | + (2 - μ) r² | | | | |------|----|-----------|----------------|--------------------|----|-------------|------| | 1 r4 | +1 | -4 - 4r2 | +6 + 8r2 + 5r4 | -4-452 | +1 | = | P h4 | | | | +2 12 | -4r2 - 4r4 | + 2 r ² | | | , | | | | | + r4 | | • | | | (b) POINT ADJACENT TO A MOMENT-FREE X-EDGE (c) POINT ADJACENT TO A MOMENT-FREE Y-EDGE (d) POINT ADJACENT TO A MOMENT-FREE X-EDGE AND A FIXED Y-EDGE (e) POINT ADJACENT TO A MOMENT-FREE Y-EDGE AND A FIXED X-EDGE Note.—For general notes see Figure 39. FIGURE 40.—Load-deflection relations, Sheet II. (4) POINT ON A MOMENT-FREE X-EDGE (b) POINT ON A MOMENT-FREE Y-EDGE $$\frac{1}{r^4} + \frac{1}{2}(1-\mu^2) - 2(1-\mu^2) - 2(1-\mu)r^2 + \frac{1}{2}\frac{(1-\mu^2)}{+4(1-\mu)r^2 + r^4} - (1-\mu^2) - 2(1-\mu)r^2 \\ + (2-\mu)r^2 - 2(2-\mu)r^2 - 2r^4 + (2-\mu)r^2 \\ + r^4$$ (c) POINT ON A MOMENT-FREE X-EDGE ADJACENT TO A MOMENT-FREE Y-EDGE | | + (2 - \mu) r2 | $-2(1-\mu)r^2-(1-\mu^2)r^4$ | | | |----|----------------|--|---|--| | +1 | -2-2(2-µ)r² | $+1 + 4(1 - \mu) r^2 + \frac{5}{2}(1 - \mu^2) r^4$ | = | $\frac{(P-R)}{rh^2} \frac{h^4}{D} \cdot$ | | | +(2 - \mu) r2 | -2(1-µ)r2-2(1-µ2)r4 | | | | | | $+\frac{1}{2}(1-\mu^2)r^4$ | | | (d) POINT ON A MOMENT-FREE Y-EDGE ADJACENT TO A MOMENT-FREE X-EDGE | + 3 | * | $+\frac{7}{2}(1-\mu^2)$
+ 4(1-\mu)r^2+r^4 | -2(1-\mu^2)-2(1-\mu) r2 | $+\frac{1}{2}(1-\mu^2)$ | | $\frac{(P-R)}{rh^2}\frac{h^4}{D}.$ | |-----|---|--|-------------------------|-------------------------|-------------|------------------------------------| | | | -2(2-µ)r2-2r4 | | | l | | | | | + r4 | | | | | (e) POINT ON A MOMENT-FREE X-EDGE ADJACENT TO A FIXED Y-EDGE (f) POINT ON A MOMENT-FREE Y-EDGE ADJACENT TO A FIXED X-EDGE Note.—For general notes see Figure 39. FIGURE 41.—Load-deflection relations, Sheet III. (0) POINT ON A MOMENT-FREE CORNER (c) POINT ON A FIXED X-EDGE (d) POINT ON A FIXED Y-EDGE (e) POINT ON A FIXED X-EDGE ADJACENT TO A FIXED CORNER (g) POINT ON A FIXED X-EDGE ADJACENT TO A MOMENT-FREE Y-EDGE (h) POINT ON A FIXED Y-EDGE ADJACENT TO A MOMENT-FREE X-EDGE (i) POINT ON A FIXED X- MOMENT-FREE Y-CORNER ()) POINT ON A FIXED Y- MOMENT-FREE X-CORNER Note.—For general notes see Figure 39. FIGURE
42.—Load-deflection relations, Sheet IV. #### (a) INTERIOR POINT #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE #### (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. Figure 43.—Load-deflection relations, vertical spacing: 3 at h; 1 at h/2, Sheet V. + n + + n + n + n + n + | | | | + r4 | | | | | |----------|-------------------|------------------------|--|------------------------|-------------------|---|----------------------------------| | | + 5 128 | $-\frac{5}{32} + 2r^2$ | $+\frac{15}{64}-4r^2-6r^4$ | $-\frac{5}{32} + 2r^2$ | + 5 128 | | | | <u> </u> | + 105 | $-\frac{105}{32}-6r^2$ | + \frac{515}{64} + 12\Gamma^2 + 2 \Gamma^4 | $-\frac{105}{32}-6r^2$ | + 105 | = | $\frac{P}{rh^2} \frac{h^4}{D}$. | | | - 7 64 | + 7/16 + 4 r2 | $-\frac{21}{32}-8r^2-24r^4$ | $+\frac{7}{16}+4r^2$ | - 7 64 | | | | | | | +814 | | | | | ├<--rh-->├<---rh--->├<---rh--->├ #### (a) INTERIOR POINT +n->+-n->+-12++-12->+ | ←- rh-->| ←-- rh ---->| #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE #### (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. Figure 44.—Load-deflection relations, vertical spacing: 2 at h; 2 at h/2; Sheet VI. #### (a) INTERIOR POINT #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE #### (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. FIGURE 45.—Load-deflection relations, vertical spacing: 2 at h; 1 at h/2; 1 at h/4, Sheet VII. | ←-- rh--->| ←---rh--->| ←---rh--->| #### (a) INTERIOR POINT #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. FIGURE 46.—Load-deflection relations, vertical spacing: 1 at h; 3 at h/2, Sheet VIII. #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE #### (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. FIGURE 47.—Load-deflection relations, vertical spacing: 1 at h; 1 at h/2; 2 at h/4, Sheet IX. | I- | |---| | r | | h | | | | Ÿ | | + | | . ^ | | Î ,µ | | 2 '' | | -+ | | - | | ₽ĥ | | Τ, | | 4" | | ······································· | | 1 | | ٨ | | 114 | | ₩ n | | ٠. | | | | _ | | | # (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE (c) POINT ON A MOMENT-FREE Y-EDGE Figure 48.—Load-deflection relations, vertical spacing: 1 each at h, h/2, h/4, and h/8, Sheet X. # (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE |---rh--->----rh----->- #### (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. FIGURE 49.—Load-deflection relations, vertical spacing: 4 at h/2, Sheet XI. # (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE # (c) POINT ON A MOMENT-FREE Y-EDGE FIGURE 50.—Load-deflection relations, vertical spacing: 1 at h/2; 3 at h/4, Sheet XII. #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE #### (c) POINT ON A MOMENT-FREE Y-EDGE FIGURE 51.—Load-deflection relations, vertical spacing: 1 at h/2; 1 at h/4; 2 at h/8, Sheet XIII. ├<--rh--->-|<----rh----->-| #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE #### (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. FIGURE 52.—Load-deflection relations, vertical spacing: 4 at h/4, Sheet XIV. # (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE #### (c) POINT ON A MOMENT-FREE Y-EDGE Figure 53.—Load-deflection relations, vertical spacing: 1 at h/4; 3 at h/8, Sheet XV. #### (b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE # ----rh--->- #### (c) POINT ON A MOMENT-FREE Y-EDGE Note.—For general notes see Figure 39. FIGURE 54.—Load-deflection relations, vertical spacing: 4 at h/8, Sheet XVI. g g FIGURE 55.—Load-deflection relations, horizontal spacing: 4 at rh/2, Sheet XVII. Note.—For general notes see Figure 39. Figure 56.—Load-deflection relations, horizontal spacing: 3 at rh/2; 1 at rh, Sheet XVIII. FIGURE 57.—Load-deflection relations, horizontal spacing: 2 at rh/2; 2 at rh, Sheet XIX. FIGURE 58.—Load-deflection relations, horizontal spacing: 1 at rh/2; 3 at rh, Sheet XX. FIGURE 59.—Load deflection relations, horizontal spacing: 4 at rh, Sheet XXI. either a fixed or moment-free corner. O at any point on a fixed edge. Note.—For general notes see Figure 39. FIGURE 60.—Moment-deflection relations. Note.—For general notes see Figure 39. ${\bf Figure} \ \ 61. -- \textit{Moment-deflection relations, various point spacings}.$ #### INTERIOR POINT POINT ADJACENT TO A MOMENT-FREE EDGE POINT ON A MOMENT-FREE EDGE #### POINT ON A MOMENT-FREE EDGE ADJACENT TO A MOMENT-FREE CORNER Note.—For general notes see Figure 39. FIGURE 62.—Shear-deflection relations, Sheet I. POINT ADJACENT TO A FIXED EDGE POINT ON A FIXED EDGE POINT ON A FIXED EDGE ADJACENT TO A FIXED CORNER POINT ON A MOMENT-FREE EDGE ADJACENT TO A FIXED EDGE Note.—For general notes see Figure 39. FIGURE 63.—Shear-deflection relations, Sheet II. Note: These arrays apply only where the load at corresponding points on opposite sides of the centerline is equal in magnitude but opposite in direction. ${\tt Note.}{-\!\!\!\!\!-}{\tt For}$ general notes see Figure 39. FIGURE 64.—Shear-deflection relations, Sheet III. | Ţ | | +28.8 | - 59.6 | +28.8 | | |------------------------|------|-------|--------|-------|------| | \frac{7}{2} | +256 | -1088 | +1669 | -1088 | +256 | | * | | +32 | -68 | +32 | | | Ÿ | | | +1 | | • | (b) POINT ADJACENT TO A FREE X-EDGE (C) INTERIOR POINT VERTICAL SPACING: 3 AT h; 1 AT $\frac{1}{2}$ h | -
- | +122.88 | -517.12 | +789.48 | -517.12 | +122 88 | = | |--------|---------|--------------|---------|---------|---------|---| | Î | | | - 59.6 | -28.8 | 1122,00 | | | Ť. | | | +1 | | J | | (d) POINT ON A FREE X-EDGE | Ţ. | | | +1 | | | |------------|-------|------|--------|------|------| | Ţ | +10 | - 8 | -10 | - 8 | +10 | | <u> </u> | + 210 | -936 | + 4427 | -936 | +210 | | ±h
X | -28 | +176 | -336 | +176 | - 28 | | 4 <u>n</u> | | | + 64/3 | | | (e) INTERIOR POINT VERTICAL SPACING: I AT h; 3 AT $\frac{1}{2}$ h (f) INTERIOR POINT VERTICAL SPACING: 2 AT h; I AT $\frac{1}{2}$ h; I AT $\frac{1}{4}$ h Figure 65.—Load-deflection coefficients, $r = \frac{1}{4}$, $\mu = 0.2$. FIGURE 66.—Plate fixed along three edges—30 equations for determining unknown deflections. a/b=1/4. | | | DEFL | ECTION COE | FFICIENTS - | 30 EQUATI | ons | |------|---------|--------------|-------------|-------------|------------|-------------| | | y/b ×/a | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | | 1.0 | + .017022 | +.049680 | +.083466 | +.107935 | +.116792 | | H | 0.8 | +.016122 | +.046840 | +.078499 | +.101377 | +.109650 | | ₽ | 0.6 | +.016030 | +.046526 | +.077914 | +.100572 | +.108761 | | 60 | 0.4 | + .015353 * | +.044177* | +.073597* | +.094719* | +.102331 * | | | 0.2 | +.011196 + | +.031304 + | +.051265 * | +.065339* | +.070366 * | | | 0.1 | + . 005859 # | + 015907 * | +.025588 * | +.032283* | +.034651 * | | | 1.0 | +.000426 | +.001800 | +.003572 | +.005018 | +.005570 | | п | 0.8 | +.003026 | +.009459 | +.016489 | +.021746 | +.023678 | | ٥ | 0.6 | +.011081 | +.031691 | +.052629 | +.067621 | +.073018 | | LOA | 0.4 | + .014484 * | +.041246 * | +.068290* | +.087579* | +.094508 * | | ۲ , | 0.2 | +.011123 + | +.030992 * | +.050636 * | +.064448 * | +.069374 * | | | 0.1 | +.005866 * | + .015887 # | +.025515 * | +.032518* | + .034506 * | | | 1.0 | +.001780 | +.005582 | +.009748 | +.012870 | +.014019 | | Ħ | 0.8 | + .003614 | +.010653 | +.018006 | +.023367 | +.025313 | | | 0.6 | +.006462 | +.018748 | +.031388 | +.040509 | +.043804 | | LOAD | 0.4 | + .008999 * | + .025735 * | +.042710 * | +.054845* | +.059210* | | ا د | 0.2 | + .008349 * | + .023051 + | +.037455 * | +.047522# | +.051102# | | | 0.1 | + .004804 * | + .012753 * | +.020243 # | +.025348# | + .027141 # | | | | DEFL | ECTION COEF | FICIENTS - | 20 EQUAT | IONS | |------|---------|-----------|-------------|------------|-----------|------------| | | y/b ×/0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | | I | 0.4 | + .015283 | + .043935 | +.073156 | + .094124 | +.101678 | | وا | 0.2 | + .010730 | +.029914 | + .048903 | + .062267 | + . 067035 | | LOAD | 0.1 | + .004899 | + .013281 | + .021325 | + .026868 | + .028824 | | | 0.05 | + .001835 | + .004944 | +.007860 | +.009833 | + .010522 | | H | 0.4 | + .014414 | +.041004 | + .067848 | +.086983 | +.093855 | | | 0.2 | + .010657 | + .029598 | +.048268 | + .061367 | +.066034 | | LOAD | 0.1 | + .004900 | + .013246 | + .021229 | +.026715 | +.028649 | | | 0.05 | + .001840 | + .004945 | + .007847 | + .009805 | +.010489 | | Ħ | 0.4 | + .008937 | + .025523 | + .042324 | + .054326 | + .058641 | | | 0.2 | + .007946 | + .021849 | + .035416 | +.044873 | + .048232 | | LOAD | 0.1 | + .003980 | + .010505 | + .016603 | + .020734 | +.022181 | | لتا | 0.05 | + .001579 | + .004080 | + .006341 | +.007838 | + .008356 | Deflection = $(Coefficient)(ph^4/D)$ NOTE Starred values computed from 30 equations are discarded when the corresponding improved value is obtained from the 20 equations. Figure 67.—Plate fixed along three edges, deflection coefficients. $a/b=\frac{1}{4}$. Various loadings. Figure 68.—Plate fixed along three edges—20 equations for determining unknown deflections. $a/b = \frac{1}{4}$. #### MOMENTS AND REACTIONS FOR RECTANGULAR PLATES Figure 69.—Numerical values of typical moment and reaction arrays, $r=\frac{1}{4}$, $\mu=0.2$. | POINT
NO. | DEFLECTIONS - w/(ph4/D) | | | | | | | | | | |--------------|-------------------------|----------|----------|-----------|----------|----------|--|--|--|--| | TENS | 0 | ı | 2 | 3 | 4 | 5 | | | | | | 6 | 0 | +.017022 | +.049680 | +.083466 | +.107935 | +.116792 | | | | | | 5 | 0 | +.016122 | +.046840 | +.078499 | +.101377 | +.109650 | | | | | | 4 | 0 | +.016030 | +.046526 | +.077914 | +.100572 | +.108761 | | | | | | 3 | 0 | +.015283 | +.043935 | + .073156 | +.094124 | +.101678 | | | | | | 2 | 0 | +.010730 | +.029914 | +.048903 | +.062267 | +.067035 | | | | | | ı | 0 | +.004899 | +.013281 | + .021325 | +.026868 | +.028824 | | | | | | 7 | 0 | +.001835 | +.004944 | +.007860 | +.009833 | +.010522 | | | | | | 0 | 0
| 0 | 0 | 0 | 0 | 0 | | | | | | POINT | | REAG | TIONS | | |---|----------|------------|-------------------|--------------------| | POINT NO. 06 05 04 03 02 01 07 00 10 20 30 40 50 | P/ph² | DEFL. TERM | R/ph ² | R _t /ph | | 06 | +.0625 | +.558356 | +.620856 | + .248342 | | 05 | +.125 | +1.136626 | +1.261626 | +.252325 | | 04 | +.125 | +1.131256 | +1.256256 | +.251251 | | 03 | +.125 | +1.131056 | +1.256056 | +,251211 | | 02 | +.09375 | +.738474 | + .832224 | +.190484 | | 01 | +.046875 | +.178392 | + .225267 | | | 07 | +.03125 | 000992 | +.030258 | | | 00 | +.015625 | 058720 | 043095 | +.029514 | | 10 | +.03125 | 001712 | +.029538 | +.023630 | | 20 | +.03125 | +.110096 | +.141346 | +.113077 | | 30 | +.03125 | +.192016 | + .223266 | +.178613 | | 40 | + .03125 | +.240512 | + .271762 | +.217410 | | 50 | +.03125 | +.256320 | + .287570 | +.230056 | | | | Σ* | +6.249145 | * Includes | | POINT
NO. | BENDING MOMENT - Mx/pb2 | | | | | | | | | |--------------|-------------------------|-----------|-----------|----------|----------|-----------|--|--|--| | TENS | 0 | ı | 2 | 3 | 4 | 5 | | | | | 6 | +.020917 | +.009607 | +.000693 | 005724 | 009592 | 010883 | | | | | 5 | +.020636 | +.009348 | +.000622 | 005585 | 009301 | 010539 | | | | | 4 | + .020518 | + .009253 | + .000553 | 005621 | 009305 | - ,010531 | | | | | 3 | +.019562 | +.008526 | + .000273 | 005438 | 008788 | 009890 | | | | | 2 | +.013734 | + .005335 | 000330 | 003930 | 005917 | 006549 | | | | | 0 | 0 | +.000470 | +.001266 | +.002012 | +.002517 | + .002694 | | | | | POINT
NO. | BENDING MOMENT - My/pb2 | | | | | | | | | |--------------|-------------------------|-----------|-----------|----------|----------|----------|--|--|--| | TENS | 0 | ı | 2 | 3 | 4 | 5 | | | | | 6 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 5 | +.004127 | +.001901 | +.000221 | 000949 | 001639 | 001868 | | | | | 4 | +.004104 | +.001825 | + .000023 | 001284 | 002078 | 002344 | | | | | 3 | +.003912 | +.001559 | 000384 | 001836 | 002734 | 003036 | | | | | 2 | +.002747 | +.000703 | 001051 | 002368 | 003177 | 003449 | | | | | 0 | 0 | + .002349 | +.006328 | +.010061 | +.012586 | +.013468 | | | | Figure 70.—Plate fixed along three edges, deflections—reactions—bending moments, Load I. $a/b = \frac{1}{4}$, $\mu = 0.2$. | | | • | |--|--|---| # List of References - Timoshenko, S., Theory of Plates and Shells, McGraw-Hill, New York, 1940. - Anonymous, "Rectangular Concrete Tanks," Concrete Information Bulletin No. ST63, Portland Cement Association, 1947. - Westergaard, H. M., and Slater, W. A., "Moments and Stresses in Slabs," Proceedings, American Concrete Institute, Vol. XVII, page 415, 1921. - 4. Nielsen, N. J., Bestemmelse af Spaendinger i Plader, Jørgenson, Copenhagen, 1920. - 5. Marcus, H., Die Theorie elastischer Gewebe, 2nd Edition, Julius Springer, Berlin, 1932. - 6. Wise, J. A., "The Calculation of Flat Plates by the Elastic Web Method," *Proceedings*, - American Concrete Institute, Vol. XXIV, page 408, 1928. - Holl, D. L., "Analysis of Plate Examples by Difference Methods and the Superposition Principle," Journal of Applied Mechanics, Vol. 58, page A-81, 1936. - 8. Barton, M. V., Finite Difference Equations for the Analysis of Thin Rectangular Plates, University of Texas, 1948. - Jensen, V. P., "Analyses of Skew Slabs," Bulletin Series No. 332, University of Illinois, Engineering Experiment Station, 1941. - Scarborough, J. B., Numerical Mathematical Analysis, John Hopkins Press, Baltimore, 1950. #### Mission of the Bureau of Reclamation The Bureau of Reclamation of the U.S. Department of the Interior is responsible for the development and conservation of the Nation's water resources in the Western United States. The Bureau's original purpose "to provide for the reclamation of arid and semiarid lands in the West" today covers a wide range of interrelated functions. These include providing municipal and industrial water supplies; hydroelectric power generation; irrigation water for agriculture; water quality improvement; flood control; river navigation; river regulation and control; fish and wildlife enhancement; outdoor recreation; and research on water-related design, construction, materials, atmospheric management, and wind and solar power. Bureau programs most frequently are the result of close cooperation with the U.S. Congress, other Federal agencies, States, local governments, academic institutions, water-user organizations, and other concerned groups. A free pamphlet is available from the Bureau entitled "Publications for Sale." It describes some of the technical publications currently available, their cost, and how to order them. The pamphlet can be obtained upon request from the Bureau of Reclamation, Attn D-7923A, PO Box 25007, Denver Federal Center, Denver CO 80225-0007.